Formality conjecture for K3 surfaces

被引:10
作者
Budur, Nero [1 ]
Zhang, Ziyu [2 ]
机构
[1] Katholieke Univ Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
关键词
K3; surfaces; stable sheaves; formality; DG algebras; DG enhancements; MODULI SPACES; STABILITY CONDITIONS; BIRATIONAL GEOMETRY; SHEAVES; REPRESENTATIONS; SINGULARITIES;
D O I
10.1112/S0010437X19007206
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a proof of the formality conjecture of Kaledin and Lehn: on a complex projective K3 surface, the differential graded (DG) algebra RHom(center dot) (F; F) is formal for any sheaf F polystable with respect to an ample line bundle. Our main tool is the uniqueness of the DG enhancement of the bounded derived category of coherent sheaves. We also extend the formality result to derived objects that are polystable with respect to a generic Bridgeland stability condition.
引用
收藏
页码:902 / 911
页数:10
相关论文
共 30 条
[11]   THE DEFORMATION-THEORY OF REPRESENTATIONS OF FUNDAMENTAL-GROUPS OF COMPACT KAHLER-MANIFOLDS [J].
GOLDMAN, WM ;
MILLSON, JJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) :153-158
[12]  
Hovey M, 1999, Math. Surv. Monogr., V63
[13]  
Huybrechts D., 2006, FOURIER MUKAI TRANSF
[14]   Stability conditions for generic K3 categories [J].
Huybrechts, Daniel ;
Macri, Emanuele ;
Stellari, Paolo .
COMPOSITIO MATHEMATICA, 2008, 144 (01) :134-162
[15]   Singular symplectic moduli spaces [J].
Kaledin, D ;
Lehn, M ;
Sorger, C .
INVENTIONES MATHEMATICAE, 2006, 164 (03) :591-614
[16]  
Kaledin D., 2007, MOSC MATH J, V7, P766
[17]   Deformation quantization of Poisson manifolds [J].
Kontsevich, M .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (03) :157-216
[18]  
Lekili Y., 2018, ARXIV180604345MATHAG
[19]   UNIQUENESS OF ENHANCEMENT FOR TRIANGULATED CATEGORIES [J].
Lunts, Valery A. ;
Orlov, Dmitri O. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) :853-908
[20]   Birational geometry of singular moduli spaces of O'Grady type [J].
Meachan, Ciaran ;
Zhang, Ziyu .
ADVANCES IN MATHEMATICS, 2016, 296 :210-267