Solar decomposition of fossil fuels as an option for sustainability

被引:55
作者
Ozalp, Nesrin [1 ]
Kogan, Abraham [2 ]
Epstein, Michael [2 ]
机构
[1] Texas A&M Univ Qatar, Dept Mech Engn, Educ City, Doha, Qatar
[2] Weizmann Inst Sci, Solar Res Facil Unit, IL-76100 Rehovot, Israel
关键词
Solar hydrogen; Cracking; Reforming; Solar reactor; TORNADO FLOW CONFIGURATION; HYDROGEN-PRODUCTION; THERMAL-DISSOCIATION; NATURAL-GAS; METHANE DECOMPOSITION; TEMPERATURE; CARBON; RECEIVER; SIMULATION; DECARBONIZATION;
D O I
10.1016/j.ijhydene.2008.11.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents an overview on solar-thermal decomposition of fossil fuels as a viable option for transition path from today's permanent dependency on fossil fuels to tomorrow's solar fuels via solar thermochemical technology. The paper focuses on the thermochemical hydrogen generation technologies from concentrated solar energy and gives an assessment of the recent advancements in the hydrogen producing solar reactors. The advantages and obstacles of hydrogen generation via solar cracking and solar reforming are presented along with some discussions on the feasibility of industrial scaling of these technologies. Solar cracking and solar reforming processes are discussed as promising hybrid solar/fossil technologies to take considerable share during transition from fossil fuel dependency to clean energy based sustainability. (c) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:710 / 720
页数:11
相关论文
共 66 条
[1]   Production of hydrogen by thermal methane splitting in a nozzle-type laboratory-scale solar reactor [J].
Abanades, S ;
Flamant, G .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (08) :843-853
[2]   Hydrogen production from solar thermal dissociation of methane in a high-temperature fluid-wall chemical reactor [J].
Abanades, Stephane ;
Flamant, Gilles .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2008, 47 (03) :490-498
[3]   Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor [J].
Abanades, Stephane ;
Flamant, Gilles .
SOLAR ENERGY, 2006, 80 (10) :1321-1332
[4]   Photobiological hydrogen production: photochemical efficiency and bioreactor design [J].
Akkerman, I ;
Janssen, M ;
Rocha, J ;
Wijffels, RH .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (11-12) :1195-1208
[5]   Catalytic thermochemical reactor/receiver for solar reforming of natural gas: Design and performance [J].
Anikeev, VI ;
Bobrin, AS ;
Ortner, J ;
Schmidt, S ;
Funken, KH ;
Kuzin, NA .
SOLAR ENERGY, 1998, 63 (02) :97-104
[6]  
BAADE WF, 2001, HYDROGEN
[7]   HIGH-TEMPERATURE SOLAR PYROLYSIS OF COAL [J].
BEATTIE, WH ;
BERJOAN, R ;
COUTURES, JP .
SOLAR ENERGY, 1983, 31 (02) :137-143
[8]  
Cengel YA, 2008, Thermodynamics: an engineering approach 6th editon (SI units)
[9]   Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor [J].
Dahl, JK ;
Buechler, KJ ;
Finley, R ;
Stanislaus, T ;
Weimer, AW ;
Lewandowski, A ;
Bingham, C ;
Smeets, A ;
Schneider, A .
ENERGY, 2004, 29 (5-6) :715-725
[10]   Solar-thermal dissociation of methane in a fluid-wall aerosol flow reactor [J].
Dahl, JK ;
Buechler, KJ ;
Weimer, AW ;
Lewandowski, A ;
Bingham, C .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (07) :725-736