Reconciling fisheries catch and ocean productivity

被引:205
作者
Stock, Charles A. [1 ]
John, Jasmin G. [1 ]
Rykaczewski, Ryan R. [2 ,3 ]
Asch, Rebecca G. [4 ,8 ]
Cheung, William W. L. [5 ]
Dunne, John P. [1 ]
Friedland, Kevin D. [6 ]
Lam, Vicky W. Y. [5 ]
Sarmiento, Jorge L. [4 ]
Watson, Reg A. [7 ]
机构
[1] Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA
[2] Univ South Carolina, Sch Earth Ocean & Environm, Columbia, SC 29208 USA
[3] Univ South Carolina, Dept Biol Sci, Columbia, SC 29208 USA
[4] Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA
[5] Univ British Columbia, Nippon Fdn Nereus Program, Inst Oceans & Fisheries, Vancouver, BC V6T 1Z4, Canada
[6] Natl Marine Fisheries Serv, Narragansett, RI 02882 USA
[7] Univ Tasmania, Inst Marine & Antarct Studies, Hobart, Tas 7001, Australia
[8] East Carolina Univ, Dept Biol, Greenville, NC 27858 USA
基金
澳大利亚研究理事会;
关键词
fisheries catch; primary production; ocean productivity; climate change; food webs; MARINE PRIMARY PRODUCTION; CLIMATE-CHANGE; FISH PRODUCTION; TROPHIC AMPLIFICATION; GLOBAL OCEAN; ECOSYSTEM; BIOMASS; SIZE; CHLOROPHYLL; TEMPERATURE;
D O I
10.1073/pnas.1610238114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photosynthesis fuels marine food webs, yet differences in fish catch across globally distributed marine ecosystems far exceed differences in net primary production (NPP). We consider the hypothesis that ecosystem-level variations in pelagic and benthic energy flows from phytoplankton to fish, trophic transfer efficiencies, and fishing effort can quantitatively reconcile this contrast in an energetically consistent manner. To test this hypothesis, we enlist global fish catch data that include previously neglected contributions from small-scale fisheries, a synthesis of global fishing effort, and plankton food web energy flux estimates from a prototype high-resolution global earth system model (ESM). After removing a small number of lightly fished ecosystems, stark interregional differences in fish catch per unit area can be explained (r = 0.79) with an energy-based model that (i) considers dynamic interregional differences in benthic and pelagic energy pathways connecting phytoplankton and fish, (ii) depresses trophic transfer efficiencies in the tropics and, less critically, (iii) associates elevated trophic transfer efficiencies with benthic-predominant systems. Model catch estimates are generally within a factor of 2 of values spanning two orders of magnitude. Climate change projections show that the same macroecological patterns explaining dramatic regional catch differences in the contemporary ocean amplify catch trends, producing changes that may exceed 50% in some regions by the end of the 21st century under high-emissions scenarios. Models failing to resolve these trophodynamic patterns may significantly underestimate regional fisheries catch trends and hinder adaptation to climate change.
引用
收藏
页码:E1441 / E1449
页数:9
相关论文
共 86 条
[1]  
[Anonymous], 2014, WORLD OCEAN ATLAS 20
[2]  
[Anonymous], NOAA ATLAS NESDIS
[3]   Global fishing effort (1950-2010): Trends, gaps, and implications [J].
Anticamara, J. A. ;
Watson, R. ;
Gelchu, A. ;
Pauly, D. .
FISHERIES RESEARCH, 2011, 107 (1-3) :131-136
[4]  
APMA, 2015, AUSTR FISH MAN AUTH
[5]   A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals [J].
Armstrong, RA ;
Lee, C ;
Hedges, JI ;
Honjo, S ;
Wakeham, SG .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2001, 49 (1-3) :219-236
[6]   Photosynthetic rates derived from satellite-based chlorophyll concentration [J].
Behrenfeld, MJ ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (01) :1-20
[7]   Elemental composition of marine Prochlorococcus and Synechococcus:: Implications for the ecological stoichiometry of the sea [J].
Bertilsson, S ;
Berglund, O ;
Karl, DM ;
Chisholm, SW .
LIMNOLOGY AND OCEANOGRAPHY, 2003, 48 (05) :1721-1731
[8]   Potential consequences of climate change for primary production and fish production in large marine ecosystems [J].
Blanchard, Julia L. ;
Jennings, Simon ;
Holmes, Robert ;
Harle, James ;
Merino, Gorka ;
Allen, J. Icarus ;
Holt, Jason ;
Dulvy, Nicholas K. ;
Barange, Manuel .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2012, 367 (1605) :2979-2989
[9]   Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models [J].
Bopp, L. ;
Resplandy, L. ;
Orr, J. C. ;
Doney, S. C. ;
Dunne, J. P. ;
Gehlen, M. ;
Halloran, P. ;
Heinze, C. ;
Ilyina, T. ;
Seferian, R. ;
Tjiputra, J. ;
Vichi, M. .
BIOGEOSCIENCES, 2013, 10 (10) :6225-6245
[10]   The trophic fingerprint of marine fisheries [J].
Branch, Trevor A. ;
Watson, Reg ;
Fulton, Elizabeth A. ;
Jennings, Simon ;
McGilliard, Carey R. ;
Pablico, Grace T. ;
Ricard, Daniel ;
Tracey, Sean R. .
NATURE, 2010, 468 (7322) :431-435