Disturbance decoupling control for a class of nonlinear time-delay systems

被引:0
作者
Gong, Qingxian [1 ,2 ]
Zhang, Huaguang [1 ]
Song, Chonghui [1 ]
Liu, Derong [3 ]
机构
[1] Northeastern Univ, Sch Informat & Engn, Shenyang, Liaoning Provin, Peoples R China
[2] Changchun Inst Technol, Dept Elect Engn, Changchun, Peoples R China
[3] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
来源
WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS | 2006年
基金
中国国家自然科学基金;
关键词
disturbance decoupling; nonlinear systems; time-delay systems; vector relative degree; feedback control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The disturbance decoupling control problem was considered for a class of MIMO nonlinear time-delay systems. Under assumptions, a nonlinear feedback control law is constructed, which ensures that outputs of the closed-loop system are unaffected by disturbances and independent of time-delay. Based on differential geometry theory, sufficient and necessary conditions are derived for the existence of such feedback control law. An example is provided to illustrate the effectiveness of the results in the paper.
引用
收藏
页码:878 / +
页数:2
相关论文
共 14 条
[1]  
Baser U, 2000, INT J ROBUST NONLIN, V10, P1317, DOI 10.1002/1099-1239(20001230)10:15<1317::AID-RNC542>3.0.CO
[2]  
2-G
[3]   A new approach to dynamic feedback linearization control of an induction motor [J].
Chiasson, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (03) :391-397
[4]  
Chun-peng Zhang, 2003, Proceedings of the CSEE, V23, P99
[5]  
De Leon J, 2000, P AMER CONTR CONF, P589, DOI 10.1109/ACC.2000.878968
[6]   Input-output decoupling of nonlinear systems by static measurement feedback [J].
Huijberts, HJC ;
Moog, CH ;
Pothin, R .
SYSTEMS & CONTROL LETTERS, 2000, 39 (02) :109-114
[7]  
Isidori A., 1989, NONLINEAR CONTROL SY
[8]   The disturbance decoupling problem for time-delay nonlinear systems [J].
Moog, CH ;
Castro-Linares, R ;
Velasco-Villa, M ;
Márquez-Martínez, LA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) :305-309
[9]   Disturbance decoupling for a class of nonlinear MIMO systems by static measurement feedback [J].
Pothin, R .
SYSTEMS & CONTROL LETTERS, 2001, 43 (02) :111-116
[10]  
Velasco M, 1997, INT J ROBUST NONLIN, V7, P847, DOI 10.1002/(SICI)1099-1239(199709)7:9<847::AID-RNC228>3.0.CO