An artificial neural network approach to laser-induced breakdown spectroscopy quantitative analysis

被引:66
作者
D'Andrea, Eleonora [1 ]
Pagnotta, Stefano [2 ]
Grifoni, Emanuela [2 ]
Lorenzetti, Giulia [2 ]
Legnaioli, Stefano [2 ]
Palleschi, Vincenzo [2 ]
Lazzerini, Beatrice [1 ]
机构
[1] Dept Informat Engn, I-56122 Pisa, Italy
[2] CNR, Inst Chem Otganometall Cpds, Appl & Laser Spect Lab, Res Area, I-56124 Pisa, Italy
关键词
Laser-induced breakdown spectroscopy; Artificial neural network; Quantitative analysis; Bronze; DOMINANT FACTOR; LIBS;
D O I
10.1016/j.sab.2014.06.012
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The usual approach to laser-induced breakdown spectroscopy (LIBS) quantitative analysis is based on the use of calibration curves, suitably built using appropriate reference standards. More recently, statistical methods relying on the principles of artificial neural networks (ANN) are increasingly used. However, ANN analysis is often used as a 'black box' system and the peculiarities of the LIBS spectra are not exploited fully. An a priori exploration of the raw data contained in the LIBS spectra, carried out by a neural network to learn what are the significant areas of the spectrum to be used for a subsequent neural network delegated to the calibration, is able to throw light upon important information initially unknown, although already contained within the spectrum. This communication will demonstrate that an approach based on neural networks specially taylored for dealing with LIBS spectra would provide a viable, fast and robust method for LIBS quantitative analysis. This would allow the use of a relatively limited number of reference samples for the training of the network, with respect to the current approaches, and provide a fully automatizable approach for the analysis of a large number of samples. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 58
页数:7
相关论文
共 21 条
[1]   Classical univariate calibration and partial least squares for quantitative analysis of brass samples by laser-induced breakdown spectroscopy [J].
Andrade, Jose Manuel ;
Cristoforetti, Gabriele ;
Legnaioli, Stefano ;
Lorenzetti, Giulia ;
Palleschi, Vincenzo ;
Shaltout, Abdallah A. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2010, 65 (08) :658-663
[2]   Modi: a new mobile instrument for in situ double-pulse LIBS analysis [J].
Bertolini, A ;
Carelli, G ;
Francesconi, F ;
Francesconi, M ;
Marchesini, L ;
Marsili, P ;
Sorrentino, F ;
Cristoforetti, G ;
Legnaioli, S ;
Palleschi, V ;
Pardini, L ;
Salvetti, A .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 385 (02) :240-247
[3]  
Boueri M, 2011, APPL SPECTROSC, V65, P307, DOI 10.1366/10-06079
[4]   Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to Olive Oils Analysis [J].
Caceres, Jorge O. ;
Moncayo, Samuel ;
Rosales, Juan D. ;
Javier Manuel de Villena, Francisco ;
Alvira, Fernando C. ;
Bilmes, Gabriel M. .
APPLIED SPECTROSCOPY, 2013, 67 (09) :1064-1072
[5]   One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis [J].
Cavalcanti, G. H. ;
Teixeira, D. V. ;
Legnaioli, S. ;
Lorenzetti, G. ;
Pardini, L. ;
Palleschi, V. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2013, 87 :51-56
[6]   Temporal and spatial evolution of a laser-induced plasma from a steel target [J].
Corsi, M ;
Cristoforetti, G ;
Hidalgo, M ;
Iriarte, D ;
Legnaioli, S ;
Palleschi, V ;
Salvetti, A ;
Tognoni, E .
APPLIED SPECTROSCOPY, 2003, 57 (06) :715-721
[7]   Determination of the deuterium/hydrogen ratio in gas reaction products by laser-induced breakdown spectroscopy [J].
D'Ulivo, A. ;
Onor, M. ;
Pitzalis, E. ;
Spiniello, R. ;
Lampugnani, L. ;
Cristoforetti, G. ;
Legnaioli, S. ;
Palleschi, V. ;
Salvetti, A. ;
Tognoni, E. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2006, 61 (07) :797-802
[8]   Guidelines for calibration in analytical chemistry - Part 1. Fundamentals and single component calibration (IUPAC recommendations 1998) [J].
Danzer, K ;
Currie, LA .
PURE AND APPLIED CHEMISTRY, 1998, 70 (04) :993-1014
[9]   Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser induced breakdown spectroscopy [J].
El Haddad, J. ;
Bruyere, D. ;
Ismael, A. ;
Gallou, G. ;
Laperche, V. ;
Michel, K. ;
Canioni, L. ;
Bousquet, B. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2014, 97 :57-64
[10]   Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy [J].
El Haddad, J. ;
Villot-Kadri, M. ;
Ismael, A. ;
Gallou, G. ;
Michel, K. ;
Bruyere, D. ;
Laperche, V. ;
Canioni, L. ;
Bousquet, B. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2013, 79-80 :51-57