Self-similar Blow-Up Profiles for Slightly Supercritical Nonlinear Schrodinger Equations

被引:1
|
作者
Bahri, Yakine [1 ]
Martel, Yvan [2 ]
Raphael, Pierre [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[2] Ecole Polytech, CMLS, CNRS, Inst Polytech Paris, F-91128 Palaiseau, France
[3] Univ Cambridge, Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WA, England
来源
ANNALES HENRI POINCARE | 2021年 / 22卷 / 05期
关键词
FOCUSING SINGULARITY; MASS; DYNAMICS;
D O I
10.1007/s00023-020-01006-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct radially symmetric self-similar blow-up profiles for the mass supercritical nonlinear Schrodinger equation i partial derivative(t)u + Delta u + |u|(p-1)u = 0 on R-d, close to the mass critical case and for any space dimension d >= 1. These profiles bifurcate from the ground-state solitary wave. The argument relies on the classical matched asymptotics method suggested in Sulem and Sulem (The nonlinear Schr<spacing diaeresis>odinger equation. Selffocusing and wave collapse. Applied mathematical sciences, 139, Springer, New York, 1999) which needs to be applied in a degenerate case due to the presence of exponentially small terms in the bifurcation equation related to the log-log blow-up law observed in the mass critical case.
引用
收藏
页码:1701 / 1749
页数:49
相关论文
共 50 条