A reduced theory for thin-film micromagnetics

被引:97
作者
Desimone, A
Kohn, RV
Müller, S
Otto, F
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
基金
欧盟地平线“2020”;
关键词
D O I
10.1002/cpa.3028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Micromagnetics is a nonlocal, nonconvex variational problem. Its minimizer represents the ground-state magnetization pattern of a ferromagnetic body under a specified external field. This paper identifies a physically relevant thin-film limit and shows that the limiting behavior is described by a certain "reduced" variational problem. Our main result is the Gamma-convergence of suitably scaled three-dimensional micromagnetic problems to a two-dimensional reduced problem: this implies, in particular. convergence of minimizers for any value of the external field. The reduced problem is degenerate but convex; as a result, it determines some (but not all) features of the ground-state magnetization pattern in the associated thin-film limit. (C) 2002 Wiley Periodicals. Inc.
引用
收藏
页码:1408 / 1460
页数:53
相关论文
共 27 条
[1]   Neel and cross-tie wall energies for planar micromagnetic configurations [J].
Alouges, FC ;
Rivière, T ;
Serfaty, S .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :31-68
[2]   Line energies for gradient vector fields in the plane [J].
Ambrosio, L ;
De Lellis, C ;
Mantegazza, C .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (04) :327-355
[3]   ASYMPTOTIC-BEHAVIOR OF THE LANDAU-LIFSHITZ MODEL OF FERROMAGNETISM [J].
ANZELLOTTI, G ;
BALDO, S ;
VISINTIN, A .
APPLIED MATHEMATICS AND OPTIMIZATION, 1991, 23 (02) :171-192
[4]   Local minimizers in micromagnetics and related problems [J].
Ball, JM ;
Taheri, A ;
Winter, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (01) :1-27
[5]   THIN-FILM MAGNETIC PATTERNS IN AN EXTERNAL-FIELD [J].
BRYANT, P ;
SUHL, H .
APPLIED PHYSICS LETTERS, 1989, 54 (22) :2224-2226
[6]  
De Giorgi E., 1975, REND MATEM UN ROMA, V8, P277
[7]  
DEGIORGI E, 1975, ACC NAZ LINC CL SCI, V82, P842
[8]   Low energy domain patterns in soft ferromagnetic films [J].
DeSimone, A ;
Kohn, RV ;
Müller, S ;
Otto, F ;
Schäfer, R .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 242 :1047-1051
[9]   Two-dimensional modelling of soft ferromagnetic films [J].
DeSimone, A ;
Kohn, RV ;
Müller, S ;
Otto, F ;
Schäfer, R .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2016) :2983-2991
[10]   HYSTERESIS AND IMPERFECTION SENSITIVITY IN SMALL FERROMAGNETIC PARTICLES [J].
DESIMONE, A .
MECCANICA, 1995, 30 (05) :591-603