On Sharp Bounds on Partition Dimension of Convex Polytopes

被引:35
作者
Chu, Yu-Ming [1 ,2 ]
Nadeem, Muhammad Faisal [3 ]
Azeem, Muhammad [4 ]
Siddiqui, Muhammad Kamran [3 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
[3] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[4] Univ Putra Malaysia, Dept Aerosp Engn, Fac Engn, Seri Kembangan 43400, Malaysia
基金
中国国家自然科学基金;
关键词
Resolving partition; partition dimension; convex polytope; flower graph; METRIC DIMENSION; FAMILIES; GRAPHS;
D O I
10.1109/ACCESS.2020.3044498
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let Omega be a connected graph and for a given l -ordered partition of vertices of a connected graph Omega is represented as beta = {beta(1), beta(2), ... , beta(l)}. The representation of a vertex mu is an element of V (Omega) is the vector r (mu vertical bar beta) = (d (mu, beta(1)), d (mu, beta(2)), ... , d (mu, beta(l))): The partition beta is a resolving partition for vertices of Omega if all vertices of Omega having the unique representation with respect to beta. The minimum number of l in the resolving partition for Omega is known as the partition dimension of Omega and represented as pd (Omega): Resolving partition and partition dimension have multipurpose applications in networking, optimization, computer, mastermind games and modeling of chemical structures. The problem of computing constant values of partition dimension is NP-hard so one can find sharp bound for the partition dimension of graph. In this article, we computed the upper bound for the convex polytopes E-n; S-n; T-n; G(n); Q(n) and flower graph f(nx3).
引用
收藏
页码:224781 / 224790
页数:10
相关论文
共 40 条
[1]   The local partition dimension of graphs [J].
Alfarisi, Ridho ;
Kristiana, Arika Indah ;
Dafik .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (03)
[2]  
Amrullah A., 2019, J PHYS C SER, V1280
[3]  
BACA M, 1988, UTILITAS MATHEMATICA, V34, P24
[4]   All graphs of order n ≥ 11 and diameter 2 with partition dimension n - 3 [J].
Baskoro, Edy Tri ;
Haryeni, Debi Oktia .
HELIYON, 2020, 6 (04)
[5]   Network discovery and verification [J].
Beerliova, Zuzana ;
Eberhard, Felix ;
Erlebach, Thomas ;
Hall, Alexander ;
Hoffmann, Michael ;
Mihal'ak, Matus ;
Ram, L. Shankar .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2006, 24 (12) :2168-2181
[6]  
Buczkowski P., 2003, Period Math.Hungar., V46, P9, DOI DOI 10.1023/A:1025745406160
[7]   On the metric dimension of cartesian products of graphs [J].
Caceres, Jose ;
Hernando, Carmen ;
Mora, Merce ;
Pelayo, Ignacio M. ;
Puertas, Maria L. ;
Seara, Carlos ;
Wood, David R. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) :423-441
[8]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[9]  
Chartrand G., 2009, C NUMERUM, V160, P47
[10]  
Chartrand G., 2000, Aequationes Mathematicae, V59, P45, DOI [10.1007/PL00000127, DOI 10.1007/PL00000127]