A Total Fractional-Order Variation Model for Image Restoration with Nonhomogeneous Boundary Conditions and Its Numerical Solution

被引:111
|
作者
Zhang, Jianping [1 ,2 ]
Chen, Ke [1 ,3 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L6972L, Merseyside, England
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[3] Univ Liverpool, Ctr Math Imaging Tech, Liverpool L6972L, Merseyside, England
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2015年 / 8卷 / 04期
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
fractional-order derivatives; total alpha-order variation; PDE; image denoising; image inverse problems; optimization methods; TOTAL VARIATION MINIMIZATION; ANISOTROPIC DIFFUSION; ALGORITHM; REGULARIZATION; RECOVERY; SPACE;
D O I
10.1137/14097121X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To overcome the weakness of a total variation based model for image restoration, various high order (typically second order) regularization models have been proposed and studied recently. In this paper we analyze and test a fractional-order derivative based total alpha-order variation model which can outperform the currently popular high order regularization models. There exist several previous works using total alpha-order variations for image restoration; however, first, no analysis has been done yet, and second, all tested formulations, differing from each other, utilize the zero Dirichlet boundary conditions which are not realistic (while nonzero boundary conditions violate definitions of fractional-order derivatives). This paper first reviews some results of fractional-order derivatives and then analyzes the theoretical properties of the proposed total a-order variational model rigorously. It then develops four algorithms for solving the variational problem-one based on the variational Split-Bregman idea and three based on direct solution of the discretize-optimization problem. Numerical experiments show that, in terms of restoration quality and solution efficiency, the proposed model can produce highly competitive results, for smooth images, to two established high order models: the mean curvature and the total generalized variation.
引用
收藏
页码:2487 / 2518
页数:32
相关论文
共 50 条