Solitary Waves of a PT-Symmetric Nonlinear Dirac Equation

被引:11
作者
Cuevas-Maraver, Jesus [1 ,2 ]
Kevrekidis, Panayotis G. [3 ,4 ,5 ]
Saxena, Avadh [4 ,5 ]
Cooper, Fred [4 ,5 ,6 ]
Khare, Avinash [7 ]
Comech, Andrew [8 ,9 ]
Bender, Carl M. [10 ]
机构
[1] Univ Seville, Dept Fis Aplicada 1, Nonlinear Phys Grp, Escuela Politecn Super, Seville 41011, Spain
[2] Univ Seville, Inst Matemat, IMUS, E-41012 Seville, Spain
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Santa Fe Inst, Santa Fe, NM 87501 USA
[7] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India
[8] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[9] Inst Informat Transmiss Problems, Moscow 127994, Russia
[10] Washington Univ, Dept Phys, St Louis, MO 63130 USA
关键词
Nonlinear dynamical systems; nonlinear differential equations; bifurcation; LINEAR INSTABILITY; FIELD; STABILITY;
D O I
10.1109/JSTQE.2015.2485607
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study we consider we consider a prototypical example of a PT-symmetric Dirac model. We discuss the underlying linear limit of the model and identify the threshold of the PT-phase transition in an analytical form. We then focus on the examination of the nonlinear model. We consider the continuation in the PT-symmetric model of the solutions of the corresponding Hamiltonianmodel and find that the solutions can be continued robustly as stable ones all the way up to thePT-transition threshold. In the latter, they degenerate into linearwaves. We also examine the dynamics of the model. Given the stability of the waveforms in the PT-exact phase, we consider them as initial conditions for parameters outside of that phase. We find that both oscillatory dynamics and exponential growth may arise, depending on the size of the corresponding " quench". The former can be characterized by an interesting form of bifrequency solutions that have been predicted on the basis of the SU(1, 1) symmetry. Finally, we explore some special, analytically tractable, but not PT-symmetric solutions in the massless limit of the model.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 47 条
[1]  
Ablowitz M.J., 2004, LONDON MATH SOC LECT
[2]   Evolution of Bloch-mode envelopes in two-dimensional generalized honeycomb lattices [J].
Ablowitz, Mark J. ;
Zhu, Yi .
PHYSICAL REVIEW A, 2010, 82 (01)
[3]   Conical diffraction in honeycomb lattices [J].
Ablowitz, Mark J. ;
Nixon, Sean D. ;
Zhu, Yi .
PHYSICAL REVIEW A, 2009, 79 (05)
[4]  
Bender C. M., 2012, J PHYS A, V45
[5]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[6]   Observation of PT phase transition in a simple mechanical system [J].
Bender, Carl M. ;
Berntson, Bjorn K. ;
Parker, David ;
Samuel, E. .
AMERICAN JOURNAL OF PHYSICS, 2013, 81 (03) :173-179
[7]   Dual PT-symmetric quantum field theories [J].
Bender, CM ;
Jones, HF ;
Rivers, RJ .
PHYSICS LETTERS B, 2005, 625 (3-4) :333-340
[8]   Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes [J].
Bendix, Oliver ;
Fleischmann, Ragnar ;
Kottos, Tsampikos ;
Shapiro, Boris .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[9]   On Spectral Stability of Solitary Waves of Nonlinear Dirac Equation in 1D [J].
Berkolaiko, G. ;
Comech, A. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2012, 7 (02) :13-31
[10]   Vakhitov-Kolokolov and energy vanishing conditions for linear instability of solitary waves in models of classical self-interacting spinor fields [J].
Berkolaiko, Gregory ;
Comech, Andrew ;
Sukhtayev, Alim .
NONLINEARITY, 2015, 28 (03) :577-592