A magnesiothermic route to multicomponent nanocomposites of FeSi2@Si@graphene and FeSi2@Si with promising anode performance

被引:28
作者
Adpakpang, Kanyaporn [1 ]
Park, Ji-eun [1 ]
Oh, Seung Mi [1 ]
Kim, Sung-Jin [1 ]
Hwang, Seong-Ju [1 ]
机构
[1] Ewha Womans Univ, Coll Nat Sci, Dept Chem & Nano Sci, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Nanocomposites; Nanoparticles; Graphene; Anode materials; Lithium secondary batteries; Magnesiothermic reaction; THIN-FILM ANODES; MESOPOROUS SILICON; STORAGE PERFORMANCE; FACILE SYNTHESIS; GRAPHENE SHEETS; ION; SI; NANOPARTICLES; REDUCTION; COMPOSITES;
D O I
10.1016/j.electacta.2014.05.121
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The multicomponent nanocomposites of FeSi2@Si@graphene and FeSi2@Si are synthesized via the magnesiothermic reduction of core-shell Fe3O4@SiO2 nanoparticles with/without graphene oxide shell. In the course of the magnesiothermic reaction, the SiO2 and Fe3O4 components in the Fe3O4@SiO2 core-shell particles are transformed into elemental Si and FeSi2, respectively. The formation of intimately-coupled composite structure consisting of Si and FeSi2 domains as well as the coating of graphene layer is verified by high resolution-transmission electron microscopy. Both the nanocomposites of FeSi2@Si@graphene and FeSi2@Si show promising anode performance for lithium ion batteries, indicating a beneficial role of the electrochemically inactive FeSi2 domains in alleviating the drastic expansion/contraction of elemental Si during the electrochemical cycling. The better cyclability and rate characteristic are obtained for the FeSi2@Si@graphene nanocomposite than for the graphene-free FeSi2@Si one, which is attributable to the depression of pulverization and the enhancement of electrical conductivity upon the coating of graphene layer. The present work highlights that the magnesiothermic reaction provides a powerful synthetic route to multicomponent Si-based nanocomposites with tailored composition and complex geometry. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 52 条
[1]   Capacity fade in Sn-C nanopowder anodes due to fracture [J].
Aifantis, Katerina E. ;
Huang, Tao ;
Hackney, Stephen A. ;
Sarakonsri, Thapanee ;
Yu, Aishui .
JOURNAL OF POWER SOURCES, 2012, 197 :246-252
[2]  
Baol Z., 2007, NATURE, V446, P172
[3]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[4]   Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries [J].
Chen, Huixin ;
Xiao, Ying ;
Wang, Lin ;
Yang, Yong .
JOURNAL OF POWER SOURCES, 2011, 196 (16) :6657-6662
[5]   Mesoporous Silicon Anodes Prepared by Magnesiothermic Reduction for Lithium Ion Batteries [J].
Chen, Wei ;
Fan, Zhongli ;
Dhanabalan, Abirami ;
Chen, Chunhui ;
Wang, Chunlei .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1055-A1059
[6]   Green Synthesis and Stable Li-Storage Performance of FeSi2/Si@C Nanocomposite for Lithium-Ion Batteries [J].
Chen, Yao ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Yang, Hanxi ;
Ai, Xinping .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (07) :3753-3758
[7]  
Choi N.-S., 2012, ANGEW CHEM INT EDIT, V51, P10000
[8]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[9]   The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries [J].
Dimitrijevic, B. J. ;
Aifantis, K. E. ;
Hackl, K. .
JOURNAL OF POWER SOURCES, 2012, 206 :343-348
[10]   Structured silicon anodes for lithium battery applications [J].
Green, M ;
Fielder, E ;
Scrosati, B ;
Wachtler, M ;
Serra Moreno, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (05) :A75-A79