Detecting Large Vessel Occlusion at Multiphase CT Angiography by Using a Deep Convolutional Neural Network

被引:53
作者
Stib, Matthew T. [1 ]
Vasquez, Justin [3 ]
Dong, Mary P. [3 ]
Kim, Yun Ho [3 ]
Subzwari, Sumera S. [3 ]
Triedman, Harold J. [3 ]
Wang, Amy [3 ]
Wang, Hsin-Lei Charlene [3 ]
Yao, Anthony D. [1 ]
Jayaraman, Mahesh [1 ,2 ,4 ]
Boxerman, Jerrold L. [1 ]
Eickhoff, Carsten [3 ]
Cetintemel, Ugur [3 ]
Baird, Grayson L. [1 ]
McTaggart, Ryan A. [1 ,2 ,4 ]
机构
[1] Brown Univ, Rhode Isl Hosp, Warren Alpert Sch Med, Dept Diagnost Imaging, 593 Eddy St,APC 701, Providence, RI 02903 USA
[2] Brown Univ, Rhode Isl Hosp, Warren Alpert Sch Med, Dept Neurosurg, 593 Eddy St,APC 701, Providence, RI 02903 USA
[3] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[4] Rhode Isl Hosp, Norman Prince Neurosci Inst, Providence, RI 02903 USA
关键词
ISCHEMIC-STROKE; ENDOVASCULAR THERAPY; IMAGING TRIAGE; THROMBECTOMY; INTRAARTERIAL; SEGMENTATION;
D O I
10.1148/radiol.2020200334
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Large vessel occlusion (LVO) stroke is one of the most time-sensitive diagnoses in medicine and requires emergent endovascular therapy to reduce morbidity and mortality. Leveraging recent advances in deep learning may facilitate rapid detection and reduce time to treatment. Purpose: To develop a convolutional neural network to detect LVOs at multiphase CT angiography. Materials and Methods: This multicenter retrospective study evaluated 540 adults with CT angiography examinations for suspected acute ischemic stroke from February 2017 to June 2018. Examinations positive for LVO (n = 270) were confirmed by catheter angiography and LVO-negative examinations (n = 270) were confirmed through review of clinical and radiology reports. Preprocessing of the CT angiography examinations included vasculature segmentation and the creation of maximum intensity projection images to emphasize the contrast agent-enhanced vasculature. Seven experiments were performed by using combinations of the three phases (arterial, phase 1; peak venous, phase 2; and late venous, phase 3) of the CT angiography. Model performance was evaluated on the held-out test set. Metrics included area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Results: The test set included 62 patients (mean age, 69.5 years; 48% women). Single-phase CT angiography achieved an AUC of 0.74 (95% confidence interval [CI]: 0.63, 0.85) with sensitivity of 77% (24 of 31; 95% CI: 59%, 89%) and specificity of 71% (22 of 31; 95% CI: 53%, 84%). Phases 1, 2, and 3 together achieved an AUC of 0.89 (95% CI: 0.81, 0.96), sensitivity of 100% (31 of 31; 95% CI: 99%, 100%), and specificity of 77% (24 of 31; 95% CI: 59%, 89%), a statistically significant improvement relative to single-phase CT angiography (P = .01). Likewise, phases 1 and 3 and phases 2 and 3 also demonstrated improved fit relative to single phase (P = .03). Conclusion: This deep learning model was able to detect the presence of large vessel occlusion and its diagnostic performance was enhanced by using delayed phases at multiphase CT angiography examinations. (C) RSNA, 2020
引用
收藏
页码:640 / 649
页数:10
相关论文
共 37 条
  • [1] Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging
    Albers, G. W.
    Marks, M. P.
    Kemp, S.
    Christensen, S.
    Tsai, J. P.
    Ortega-Gutierrez, S.
    McTaggart, R. A.
    Torbey, M. T.
    Kim-Tenser, M.
    Leslie-Mazwi, T.
    Sarraj, A.
    Kasner, S. E.
    Ansari, S. A.
    Yeatts, S. D.
    Hamilton, S.
    Mlynash, M.
    Heit, J. J.
    Zaharchuk, G.
    Kim, S.
    Carrozzella, J.
    Palesch, Y. Y.
    Demchuk, A. M.
    Bammer, R.
    Lavori, P. W.
    Broderick, J. P.
    Lansberg, M. G.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (08) : 708 - 718
  • [2] Imaging Triage of Patients with Late-Window (6?24 Hours) Acute Ischemic Stroke: A Comparative Study Using Multiphase CT Angiography versus CT Perfusion
    Almekhlafi, M. A.
    Kunz, W. G.
    McTaggart, R. A.
    Jayaraman, M. V.
    Najm, M.
    Ahn, S. H.
    Fainardi, E.
    Rubiera, M.
    Khaw, A. V.
    Zini, A.
    Hill, M. D.
    Demchuk, A. M.
    Goyal, M.
    Menon, B. K.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2020, 41 (01) : 129 - 133
  • [3] Automated Detection of Intracranial Large Vessel Occlusions on Computed Tomography Angiography: A Single Center Experience
    Amukotuwa, Shalini A.
    Straka, Matus
    Smith, Heather
    Chandra, Ronil V.
    Dehkharghani, Seena
    Fischbein, Nancy J.
    Bammer, Roland
    [J]. STROKE, 2019, 50 (10) : 2790 - 2798
  • [4] [Anonymous], ARXIV14091556CS
  • [5] Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration
    Arbabshirani, Mohammad R.
    Fornwalt, Brandon K.
    Mongelluzzo, Gino J.
    Suever, Jonathan D.
    Geise, Brandon D.
    Patel, Aalpen A.
    Moore, Gregory J.
    [J]. NPJ DIGITAL MEDICINE, 2018, 1
  • [6] A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke
    Berkhemer, O. A.
    Fransen, P. S. S.
    Beumer, D.
    van den Berg, L. A.
    Lingsma, H. F.
    Yoo, A. J.
    Schonewille, W. J.
    Vos, J. A.
    Nederkoorn, P. J.
    Wermer, M. J. H.
    van Walderveen, M. A. A.
    Staals, J.
    Hofmeijer, J.
    van Oostayen, J. A.
    Nijeholt, G. J. Lycklama A.
    Boiten, J.
    Brouwer, P. A.
    Emmer, B. J.
    de Bruijn, S. F.
    van Dijk, L. C.
    Kappelle, L. J.
    Lo, R. H.
    Van Dijk, E. J.
    de Vries, J.
    de Kort, P. L. M.
    van Rooij, W. J. J.
    van den Berg, J. S. P.
    van Hasselt, B. A. A. M.
    Aerden, L. A. M.
    Dallinga, R. J.
    Visser, M. C.
    Bot, J. C. J.
    Vroomen, P. C.
    Eshghi, O.
    Schreuder, T. H. C. M. L.
    Heijboer, R. J. J.
    Keizer, K.
    Tielbeek, A. V.
    den Hertog, H. M.
    Gerrits, D. G.
    van den Berg-Vos, R. M.
    Karas, G. B.
    Steyerberg, E. W.
    Flach, H. Z.
    Marquering, H. A.
    Sprengers, M. E. S.
    Jenniskens, S. F. M.
    Beenen, L. F. M.
    van den Berg, R.
    Koudstaal, P. J.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (01) : 11 - 20
  • [7] Detection of emergent large vessel occlusion stroke with CT angiography is high across all levels of radiology training and grayscale viewing methods
    Boyd, Chelsea A.
    Jayaraman, Mahesh, V
    Baird, Grayson L.
    Einhorn, William S.
    Stib, Matthew T.
    Atalay, Michael K.
    Boxerman, Jerrold L.
    Lourenco, Ana P.
    Jindal, Gaurav
    Hidlay, Douglas T.
    DiBiasio, Eleanor L.
    McTaggart, Ryan A.
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (08) : 4447 - 4453
  • [8] Retinal Blood Vessel Segmentation Based on Heuristic Image Analysis
    Braovic, Maja
    Stipanicev, Darko
    Seric, Ljiljana
    [J]. COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2019, 16 (01) : 227 - 245
  • [9] A systematic study of the class imbalance problem in convolutional neural networks
    Buda, Mateusz
    Maki, Atsuto
    Mazurowski, Maciej A.
    [J]. NEURAL NETWORKS, 2018, 106 : 249 - 259
  • [10] Improved Detection of Anterior Circulation Occlusions: The "Delayed Vessel Sign" on Multiphase CT Angiography
    Byrne, D.
    Sugrue, G.
    Stanley, E.
    Walsh, J. P.
    Murphy, S.
    Kavanagh, E. C.
    MacMahon, P. J.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (10) : 1911 - 1916