Thermal conduction between a heated microcantilever and a surrounding air environment

被引:63
作者
Kim, Kyoung Joon [1 ]
King, William P. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
关键词
Thermal conduction; Microcantilever; Finite element analysis; FORCE MICROSCOPE CANTILEVERS; DESIGN; TEMPERATURE; POLYMER;
D O I
10.1016/j.applthermaleng.2008.07.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper investigates transient heat conduction between a heated microcantilever and its air environment. Continuum finite element simulations allow detailed analysis of heat flow within and from the resistively heated microcantilever. Heat generation of 8 mW excites the cantilever with heating that is either steady, pulse, sinusoidal, or pulse duty cycle. The time-averaged heat conduction from the cantilever leg to the nearby air is typically two to six times greater than the heat conduction from the heater to the air. The cooling time constant increases as the pulse heating time increases; for heating times of 1-1000 mu s, the cooling time ranges 4.6-70 mu s. The effective heat transfer coefficients around the heater and around the leg are considerably large; on the order of 1 kW/m(2) K. This study of heat transfer between a microcantilever and its surrounding air environment will aid the design and operation of microcantilever heaters. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1631 / 1641
页数:11
相关论文
共 48 条
[1]   Thermal metrology of silicon microstructures using Raman spectroscopy [J].
Abel, Mark R. ;
Wright, Tanya L. ;
King, William P. ;
Graham, Samuel .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2007, 30 (02) :200-208
[2]   Thermal conduction in doped single-crystal silicon films [J].
Asheghi, M ;
Kurabayashi, K ;
Kasnavi, R ;
Goodson, KE .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (08) :5079-5088
[3]  
Beckers H., 1956, APPL SCI RES A, V6, P82
[4]   Micromechanical thermogravimetry [J].
Berger, R ;
Lang, HP ;
Gerber, C ;
Gimzewski, JK ;
Fabian, JH ;
Scandella, L ;
Meyer, E ;
Guntherodt, HJ .
CHEMICAL PHYSICS LETTERS, 1998, 294 (4-5) :363-369
[5]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[6]   Ultrahigh-density atomic force microscopy data storage with erase capability [J].
Binnig, G ;
Despont, M ;
Drechsler, U ;
Häberle, W ;
Lutwyche, M ;
Vettiger, P ;
Mamin, HJ ;
Chui, BW ;
Kenny, TW .
APPLIED PHYSICS LETTERS, 1999, 74 (09) :1329-1331
[7]   Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage [J].
Chui, BW ;
Stowe, TD ;
Ju, YS ;
Goodson, KE ;
Kenny, TW ;
Mamin, HJ ;
Terris, BD ;
Ried, RP ;
Rugar, D .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998, 7 (01) :69-78
[8]  
CHUI BW, 1999, MICROSCALE THERM ENG, V3
[9]   Cantilevers with nano-heaters for thermomechanical storage application [J].
Drechsler, U ;
Bürer, N ;
Despont, M ;
Dürig, U ;
Gotsmann, B ;
Robin, F ;
Vettiger, P .
MICROELECTRONIC ENGINEERING, 2003, 67-8 :397-404
[10]   Fundamentals of micromechanical thermoelectric sensors -: art. no. 044906 [J].
Dürig, U .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (04)