Plasmon-assisted Forster resonance energy transfer at the single-molecule level in the moderate quenching regime

被引:57
作者
Bohlen, J. [1 ,2 ,3 ,4 ]
Cuartero-Gonzalez, A. [5 ]
Pibiri, E. [1 ,2 ,3 ]
Ruhlandt, D. [6 ]
Fernandez-Dominguez, A., I [5 ]
Tinnefeld, P. [4 ]
Acuna, G. P. [1 ,2 ,3 ,7 ]
机构
[1] Braunschweig Univ Technol, Inst Phys & Theoret Chem NanoBioSci, Braunschweig, Germany
[2] Braunschweig Univ Technol, Braunschweig Integrated Ctr Syst Biol BRICS, Braunschweig, Germany
[3] Braunschweig Univ Technol, Lab Emerging Nanometrol LENA, Braunschweig, Germany
[4] Ludwig Maximilians Univ Munchen, Fac Chem & Pharm, NanoBioSci, Munich, Germany
[5] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada & Condensed Matter P, E-28049 Madrid, Spain
[6] Georg August Univ Gottingen, Inst Phys Biophys 3, Gottingen, Germany
[7] Univ Fribourg, Dept Phys, Chemin Musee 3, CH-1700 Fribourg, Switzerland
基金
欧洲研究理事会; 欧盟第七框架计划; 瑞士国家科学基金会;
关键词
FLUORESCENCE ENHANCEMENT; DISTANCE DEPENDENCE; OPTICAL-PROPERTIES; DNA; LIGHT; FRET; NANOANTENNAS;
D O I
10.1039/c9nr01204d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metallic nanoparticles were shown to affect Forster energy transfer between fluorophore pairs. However, to date, the net plasmonic effect on FRET is still under dispute, with experiments showing efficiency enhancement and reduction. This controversy is due to the challenges involved in the precise positioning of FRET pairs in the near field of a metallic nanostructure, as well as in the accurate characterization of the plasmonic impact on the FRET mechanism. Here, we use the DNA origami technique to place a FRET pair 10 nm away from the surface of gold nanoparticles with sizes ranging from 5 to 20 nm. In this configuration, the fluorophores experience only moderate plasmonic quenching. We use the acceptor bleaching approach to extract the FRET rate constant and efficiency on immobilized single FRET pairs based solely on the donor lifetime. This technique does not require a posteriori correction factors neither a priori knowledge of the acceptor quantum yield, and importantly, it is performed in a single spectral channel. Our results allow us to conclude that, despite the plasmon-assisted Purcell enhancement experienced by donor and acceptor partners, the gold nanoparticles in our samples have a negligible effect on the FRET rate, which in turns yields a reduction of the transfer efficiency.
引用
收藏
页码:7674 / 7681
页数:8
相关论文
共 56 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]   Enhancing single-molecule fluorescence with nanophotonics [J].
Acuna, Guillermo ;
Grohmann, Dina ;
Tinnefeld, Philip .
FEBS LETTERS, 2014, 588 (19) :3547-3552
[3]   DNA-templated nanoantennas for single-molecule detection at elevated concentrations [J].
Acuna, Guillermo P. ;
Holzmeister, Phil ;
Moeller, Friederike M. ;
Beater, Susanne ;
Lalkens, Birka ;
Tinnefeld, Philip .
JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (06)
[4]   Distance Dependence of Single-Fluorophore Quenching by Gold Nanoparticles Studied on DNA Origami [J].
Acuna, Guillermo P. ;
Bucher, Martina ;
Stein, Ingo H. ;
Steinhauer, Christian ;
Kuzyk, Anton ;
Holzmeister, Phil ;
Schreiber, Robert ;
Moroz, Alexander ;
Stefani, Fernando D. ;
Liedl, Tim ;
Simmel, Friedrich C. ;
Tinnefeld, Philip .
ACS NANO, 2012, 6 (04) :3189-3195
[5]   FRET enhancement close to gold nanoparticles positioned in DNA origami constructs [J].
Aissaoui, Nesrine ;
Moth-Poulsen, Kasper ;
Kall, Mikael ;
Johansson, Peter ;
Wilhelmsson, L. Marcus ;
Albinsson, Bo .
NANOSCALE, 2017, 9 (02) :673-683
[6]   A revisitation of the Forster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Forster radius of the unbounded medium. (3) The impact of the local density of states [J].
Alejandro Gonzaga-Galeana, J. ;
Zurita-Sanchez, Jorge R. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (24)
[7]   Forster energy transfer in an optical microcavity [J].
Andrew, P ;
Barnes, WL .
SCIENCE, 2000, 290 (5492) :785-788
[8]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[9]   Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations [J].
Aouani, Heykel ;
Mahboub, Oussama ;
Bonod, Nicolas ;
Devaux, Eloise ;
Popov, Evgeny ;
Rigneault, Herve ;
Ebbesen, Thomas W. ;
Wenger, Jerome .
NANO LETTERS, 2011, 11 (02) :637-644
[10]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]