Using Active Sliding Mode Controller Antisynchronization of fractional-order Chaotic Systems with Uncertainties and Disturbances

被引:0
作者
Hong, Zhang [1 ]
机构
[1] Minzu Univ China, Sch Informat Engn, Beijing, Peoples R China
来源
INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY II, PTS 1-4 | 2013年 / 411-414卷
关键词
antisynchronization; fractional-order; active sliding mode; disturbances; uncertainties; SYNCHRONIZATION; HYPERCHAOS; DYNAMICS;
D O I
10.4028/www.scientific.net/AMM.411-414.1779
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The antisynchronization behavior of fractional-order chaotic systems with parametric uncertainties and external disturbances is explored by using robust active sliding mode control method. The sufficient conditions for achieving robust antisynchronization of two identical fractional-order chaotic systems with different initial conditions and two different fractional-order chaotic systems with terms of uncertainties and external disturbances are derived based on the fractional-order derivative method. Analysis and numerical simulations are shown for validation purposes.
引用
收藏
页码:1779 / 1786
页数:8
相关论文
共 17 条
[1]   Robust synchronization of perturbed Chen's fractional-order chaotic systems [J].
Asheghan, Mohammad Mostafa ;
Beheshti, Mohammad Taghi Hamidi ;
Tavazoei, Mohammad Saleh .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) :1044-1051
[2]   OBSERVER-BASED SYNCHRONIZATION FOR A CLASS OF FRACTIONAL CHAOTIC SYSTEMS VIA A SCALAR SIGNAL: RESULTS INVOLVING THE EXACT SOLUTION OF THE ERROR DYNAMICS [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (03) :955-962
[3]  
Erjaee G. H., 2009, DISCRETE DYN NAT SOC, V2009, P753
[4]   HARMONIC-BALANCE METHODS FOR THE ANALYSIS OF CHAOTIC DYNAMICS IN NONLINEAR-SYSTEMS [J].
GENESIO, R ;
TESI, A .
AUTOMATICA, 1992, 28 (03) :531-548
[5]   Chaotic dynamics of the fractional Lorenz system [J].
Grigorenko, I ;
Grigorenko, E .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)
[6]   CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM [J].
HARTLEY, TT ;
LORENZO, CF ;
QAMMER, HK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :485-490
[7]   Chaos and hyperchaos in the fractional-order Rossler equations [J].
Li, CG ;
Chen, GR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 :55-61
[8]   Chaos in Chen's system with a fractional order [J].
Li, CP ;
Peng, GJ .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :443-450
[9]  
Podlubny I., 1998, Fractional Differential Equations
[10]  
Razminia A., 2011, ADV DIFFER EQU, V2011, P15