Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires

被引:43
作者
Rahong, Sakon [1 ]
Yasui, Takao [2 ,3 ,4 ]
Yanagida, Takeshi [1 ]
Nagashima, Kazuki [1 ]
Kanai, Masaki [1 ]
Klamchuen, Annop [1 ]
Meng, Gang [1 ]
He, Yong [1 ]
Zhuge, Fuwei [1 ]
Kaji, Noritada [2 ,3 ,4 ]
Kawai, Tomoji [1 ]
Baba, Yoshinobu [2 ,3 ,4 ,5 ]
机构
[1] Osaka Univ, Inst Sci & Ind Res, Ibaraki, Osaka 5670047, Japan
[2] Nagoya Univ, Grad Sch Engn, Dept Appl Chem, Nagoya, Aichi 4648603, Japan
[3] Nagoya Univ, Res Ctr Innovat Nanobiodevices 1, Nagoya, Aichi 4648603, Japan
[4] Nagoya Univ, Inst Innovat Future Soc, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[5] Natl Inst Adv Ind Sci & Technol, Hlth Res Inst, Takamatsu, Kagawa 7610395, Japan
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
日本学术振兴会;
关键词
ENTROPIC TRAP; PORE-SIZE; SEPARATION; ELECTROPHORESIS; MOBILITY; FLOW; GELS;
D O I
10.1038/srep05252
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp-166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules.
引用
收藏
页数:8
相关论文
共 49 条
[31]  
Nkodo AE, 2001, ELECTROPHORESIS, V22, P2424, DOI 10.1002/1522-2683(200107)22:12<2424::AID-ELPS2424>3.0.CO
[32]  
2-1
[33]   THE SPACES IN A UNIFORM RANDOM SUSPENSION OF FIBRES [J].
OGSTON, AG .
TRANSACTIONS OF THE FARADAY SOCIETY, 1958, 54 (11) :1754-1757
[34]   DNA electrophoresis in a sparse ordered post array [J].
Ou, Jia ;
Cho, Jaeseol ;
Olson, Daniel W. ;
Dorfman, Kevin D. .
PHYSICAL REVIEW E, 2009, 79 (06)
[35]   DNA electrophoresis in a nanofence array [J].
Park, Sung-Gyu ;
Olson, Daniel W. ;
Dorfman, Kevin D. .
LAB ON A CHIP, 2012, 12 (08) :1463-1470
[36]   Free-solution oligonucleotide separation in nanoscale channels [J].
Pennathur, Sumita ;
Baldessari, Fabio ;
Santiago, Juan G. ;
Kattah, Michael G. ;
Steinman, Jonathan B. ;
Utz, Paul J. .
ANALYTICAL CHEMISTRY, 2007, 79 (21) :8316-8322
[37]   Pore size of agarose gels by atomic force microscopy [J].
Pernodet, N ;
Maaloum, M ;
Tinland, B .
ELECTROPHORESIS, 1997, 18 (01) :55-58
[38]   Electrophoretic separation of DNA in gels and nanostructures [J].
Salieb-Beugelaar, G. B. ;
Dorfman, K. D. ;
van den Berg, A. ;
Eijkel, J. C. T. .
LAB ON A CHIP, 2009, 9 (17) :2508-2523
[39]   GEL-ELECTROPHORESIS OF DNA IN MODERATE FIELDS - THE EFFECT OF FLUCTUATIONS [J].
SEMENOV, AN ;
DUKE, TAJ ;
VIOVY, JL .
PHYSICAL REVIEW E, 1995, 51 (02) :1520-1537
[40]   Nanospheres for DNA separation chips [J].
Tabuchi, M ;
Ueda, M ;
Kaji, N ;
Yamasaki, Y ;
Nagasaki, Y ;
Yoshikawa, K ;
Kataoka, K ;
Baba, Y .
NATURE BIOTECHNOLOGY, 2004, 22 (03) :337-340