Parameter-free linear relationship (PFLR) and its application to 3D QSAR

被引:2
作者
Farkas, Oedoen [1 ]
Jakli, Imre [1 ]
Kalaszi, Adrian [1 ]
Imre, Gabor [1 ]
机构
[1] Eotvos Lorand Univ, Lab Chem Informat, Inst Chem, H-1117 Budapest, Hungary
关键词
PFLR; Parameter-free; Linear relationship; 3D QSAR; QSPR; Linear regression; Multidimensional interpolation; Partial least squares; PLS; CIRCULAR-DICHROISM CURVES; CONVERGENCE ACCELERATION; GEOMETRY OPTIMIZATION; ITERATIVE SUBSPACE; DIRECT INVERSION; ANALYSIS COMSIA; PROTEINS; DECONVOLUTION; ALGORITHM; MOLECULES;
D O I
10.1007/s10910-008-9348-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The linear relationship is still the most important tool for establishing connection between correlating features, properties. The name "parameter-free linear relationship" (PFLR) stands for a new formalism, a generalized interpolation scheme, which can be readily used for predicting biological activities or other properties in 3D QSAR manner. Our studies demonstrate the good predictive power of PFLR even when used with a simple set of 3D molecular descriptors without constructing a grid representation of the features. PFLR allows completing most of the computations solely in the space of descriptors, without experimental training data, which, however, bears no importance in the case of 3D QSAR but might be advantageous in other areas where multidimensional linear regression or partial least squares based methods are applicable.
引用
收藏
页码:598 / 606
页数:9
相关论文
共 50 条
  • [21] Variable Elimination Approaches for Data-Noise Reduction in 3D QSAR Calculations
    Dolezal, Rafael
    Bodnarova, Agata
    Cimler, Richard
    Husakova, Martina
    Najman, Lukas
    Racakova, Veronika
    Krenek, Jiri
    Korabecny, Jan
    Kuca, Kamil
    Krejcar, Ondrej
    PROGRESS IN ARTIFICIAL INTELLIGENCE-BK, 2015, 9273 : 313 - 325
  • [22] 3D QSAR, PHARMACOPHORE INDENTIFICATION STUDIES ON SERIES OF INDOLE DERIVATIVES AS DOPAMINE ANTAGONIST
    Metkar, Shashikant
    Bhatia, Manish
    Desai, Uday
    PHARMACOPHORE, 2012, 3 (05): : 280 - 286
  • [23] Docking and 3D QSAR Studies on p38α MAP Kinase Inhibitors
    Jatavath, Mohan Babu
    Sivan, Sree Kanth
    Lingala, Yamini
    Manga, Vijjulatha
    E-JOURNAL OF CHEMISTRY, 2011, 8 (04) : 1596 - 1605
  • [24] 3D QSAR, PHARMACOPHORE INDENTIFICATION STUDIES ON SERIES OF IMIDAZOPYRIDINE ANALOGS AS NEMATICIDAL ACTIVITY
    Gadkari, Sachin
    Choudhari, Prafulla
    Bhatia, Manish
    Khetmar, Sonali
    Jadhav, Swapnil
    PHARMACOPHORE, 2012, 3 (04): : 199 - 208
  • [25] 3D perspective into MIA-QSAR: A case for anti-HCV agents
    Dare, Joyce K.
    Ramalho, Teodorico C.
    Freitas, Matheus P.
    CHEMICAL BIOLOGY & DRUG DESIGN, 2019, 93 (06) : 1096 - 1104
  • [26] Andrographolide Analogues: Pharmacophore Modeling and 3D QSAR analysis
    Pande, Jitendra N.
    Gupta, B. K.
    Ghosh, L. K.
    Sen, Debanjan
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES, 2012, 1 (04): : 89 - 93
  • [27] Hologram and Receptor-Guided 3D QSAR Analysis of Anilinobipyridine JNK3 Inhibitors
    Chung, Jae Yoon
    Cho, Art E.
    Hah, Jung-Mi
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2009, 30 (11): : 2739 - 2748
  • [28] 3D and quantum QSAR of non-benzodiazepine compounds
    Pasha, F. A.
    Muddassar, M.
    Cho, Seung Joo
    Ahmad, Kaleem
    Beg, Yakub
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2008, 43 (11) : 2361 - 2372
  • [30] 3D QSAR Studies, Pharmacophore Modeling and Virtual Screening on a Series of Steroidal Aromatase Inhibitors (vol 15, 20927, 2014)
    Xie, Huiding
    Qiu, Kaixiong
    Xie, Xiaoguang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (03): : 5072 - 5075