Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)-Based Strategy for Proteome-Wide Thermodynamic Analysis of Protein-Ligand Binding Interactions

被引:54
|
作者
Tran, Duc T. [1 ]
Adhikari, Jagat [1 ]
Fitzgerald, Michael C. [1 ,2 ]
机构
[1] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
[2] Duke Univ, Dept Chem, Durham, NC 27708 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
MASS-SPECTROMETRY; ATP-BINDING; STABILITY; CYCLOSPORINE; CYCLOPHILIN; PROTOCOL; TARGET;
D O I
10.1074/mcp.M113.034702
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Described here is a quantitative mass spectrometry-based proteomics method for the large-scale thermodynamic analysis of protein-ligand binding interactions. The methodology utilizes a chemical modification strategy termed, Stability of Proteins from Rates of Oxidation (SPROX), in combination with a Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) approach to compare the equilibrium folding/unfolding properties of proteins in the absence and presence of target ligands. The method, which is general with respect to ligand, measures the ligand-induced changes in protein stability associated with protein-ligand binding. The methodology is demonstrated in a proof-of-principle study in which the well-characterized protein-drug interaction between cyclosporine A (CsA) and cyclophilin A was successfully analyzed in the context of a yeast cell lysate. A control experiment was also performed to assess the method's false positive rate of ligand discovery, which was found to be on the order of 0.4 - 3.5%. The new method was utilized to characterize the adenosine triphosphate (ATP)-interactome in Saccharomyces cerevisiae using the nonhydrolyzable ATP analog, adenylyl imidodiphosphate (AMPPNP), and the proteins in a yeast cell lysate. The new methodology enabled the interrogation of 526 yeast proteins for interactions with ATP using 2035 peptide probes. Ultimately, 325 peptide hits from 139 different proteins were identified. Approximately 70% of the hit proteins identified in this work were not previously annotated as ATP binding proteins. However, nearly two-thirds of the newly discovered ATP interacting proteins have known interactions with other nucleotides and co-factors (e. g. NAD and GTP), DNA, and RNA based on GO-term analyses. The current work is the first proteome-wide profile of the yeast ATP-interactome, and it is the largest proteome-wide profile of any ATP-interactome generated, to date, using an energetics-based method. The data is available via ProteomeXchange with identifiers PXD000858, DOI 10.6019/PXD000858, and PXD000860.
引用
收藏
页码:1800 / 1813
页数:14
相关论文
共 17 条
  • [1] Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) - an Introduction for Biologists
    Graham, Robert L. J.
    Sweredoski, Michael J.
    Hess, Sonja
    CURRENT PROTEOMICS, 2011, 8 (01) : 2 - 16
  • [2] Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics
    Hoedt, Esthelle
    Zhang, Guoan
    Neubert, Thomas A.
    ADVANCEMENTS OF MASS SPECTROMETRY IN BIOMEDICAL RESEARCH, 2014, 806 : 93 - 106
  • [3] Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics
    Hoedt, Esthelle
    Zhang, Guoan
    Neubert, Thomas A.
    ADVANCEMENTS OF MASS SPECTROMETRY IN BIOMEDICAL RESEARCH, 2ND EDITION, 2019, 1140 : 531 - 539
  • [4] Classification-based quantitative analysis of stable isotope labeling by amino acids in cell culture (SILAC) data
    Kim, Seongho
    Carruthers, Nicholas
    Lee, Joohyoung
    Chinni, Sreenivasa
    Stemmer, Paul
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 137 : 137 - 148
  • [5] Stable Isotope Labeling Strategy for Protein-Ligand Binding Analysis in Multi-Component Protein Mixtures
    DeArmond, Patrick D.
    West, Graham M.
    Huang, Hai-Tsang
    Fitzgerald, Michael C.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2011, 22 (03) : 418 - 430
  • [6] Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis
    Soufi, Boumediene
    Kumar, Chanchal
    Gnad, Florian
    Mann, Matthias
    Mijakovic, Ivan
    Macek, Boris
    JOURNAL OF PROTEOME RESEARCH, 2010, 9 (07) : 3638 - 3646
  • [7] Application of the SILAC (stable isotope labelling with amino acids in cell culture) technique in quantitative comparisons for tissue proteome expression
    Xu, Yuhuan
    Liang, Shufang
    Shen, Guobo
    Xu, Xuejiao
    Liu, Qingping
    Xu, Zhizhong
    Gong, Fengming
    Tang, Minghai
    Wei, Yuquan
    BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2009, 54 : 11 - 20
  • [8] Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC)
    Foster, LJ
    Rudich, A
    Talior, I
    Patel, N
    Huang, XD
    Furtado, LM
    Bilan, PJ
    Mann, M
    Klip, A
    JOURNAL OF PROTEOME RESEARCH, 2006, 5 (01) : 64 - 75
  • [9] Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC)
    Zhang, GA
    Spellman, DS
    Skolnik, EY
    Neubert, TA
    JOURNAL OF PROTEOME RESEARCH, 2006, 5 (03) : 581 - 588
  • [10] Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC)
    Lamoureux, F.
    Gastinel, L. N.
    Mestre, E.
    Marquet, P.
    Essig, M.
    JOURNAL OF PROTEOMICS, 2012, 75 (12) : 3674 - 3687