Rule-Based Approaches for Representing Probabilistic Ontology Mappings

被引:0
作者
Cali, Andrea [1 ,2 ]
Lukasiewicz, Thomas [2 ,3 ]
Predoiu, Livia [4 ]
Stuckenschmidt, Heiner [4 ]
机构
[1] Univ Oxford, Oxford Man Inst Quantitat Finance, Blue Boar Court,9 Alfred St, Oxford OX1 4EH, England
[2] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
[3] Vienna Univ Technol, Inst Informat Syst, A-1040 Vienna, Austria
[4] Univ Mannheim, Inst Informat, D-68159 Mannheim, Germany
来源
UNCERTAINTY REASONING FOR THE SEMANTIC WEB I | 2008年 / 5327卷
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
Representing probabilistic ontology mappings; rule languages; Semantic Web; uncertainty; inconsistency; probabilistic description logic programs; description logics; disjunctive logic programs; answer set semantics; Bayesian probabilities; Bayesian description logic programs; Datalog; Bayesian networks;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using mappings between ontologies is a common way of approaching the semantic heterogeneity problem on the Semantic Web. To fit into the landscape of Semantic Web languages, a suitable logic-based representation formalism for mappings is needed, which allows to reason with ontologies and mappings in an integrated manner, and to deal with uncertainty and inconsistencies in automatically created mappings. We analyze the requirements for such a formalism, and propose to use frameworks that integrate description logic ontologies with probabilistic rules. We compare two such frameworks and show the advantages of using the probabilistic extensions of their deterministic counterparts. The two frameworks that we compare are tightly coupled probabilistic dl-programs, which tightly combine the description logics behind OWL DL resp. OWL Lite, disjunctive logic programs under the answer set semantics, and Bayesian probabilities, on the one hand. and generalized Bayesian dl-programs, which tightly combine the DLP-fragment of OWL Lite with Datalog (without negation and equality) based on the semantics of Bayesian networks, on the other hand.
引用
收藏
页码:66 / +
页数:3
相关论文
共 22 条
  • [1] [Anonymous], 2007, AAAI
  • [2] Cali A, 2008, LECT NOTES COMPUT SC, V4932, P178, DOI 10.1007/978-3-540-77684-0_14
  • [3] DACOSTA PCG, 2006, P FOIS 2006, P237
  • [4] DACOSTA PCG, 2005, THESIS G MASON U FAI
  • [5] Combining answer set programming with description logics for the semantic Web
    Eiter, Thomas
    Ianni, Giovambattista
    Lukasiewicz, Thomas
    Schindlauer, Roman
    Tompits, Hans
    [J]. ARTIFICIAL INTELLIGENCE, 2008, 172 (12-13) : 1495 - 1539
  • [6] Euzenat J., 2005, P K CAP 2005 WORKSH
  • [7] Euzenat J., 2006, P ISWC 2006 WORKSH O
  • [8] Euzenat Jerome, 2007, Ontology matching, DOI 10.1007/978-3-540-49612-0
  • [9] Recursive aggregates in disjunctive logic programs: Semantics and complexity
    Faber, W
    Leone, N
    Pfeifer, G
    [J]. LOGICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3229 : 200 - 212
  • [10] Gelfond M., 1991, New Generation Computing, V9, P365, DOI 10.1007/BF03037169