Discrete Morse Functions from Fourier Transforms

被引:8
作者
Engstrom, Alexander [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
Discrete Morse theory; Fourier transforms; simplicial complexes; Boolean functions; CONJECTURE; COMPLEXES; 3-SPHERE; THEOREM;
D O I
10.1080/10586458.2009.10128886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A discrete Morse function on a simplicial complex describes how to construct a homotopy-equivalent CW-complex with possibly fewer cells. We associate a Boolean function with a given simplicial complex and construct a discrete Morse function using its Fourier transform. Methods from theoretical computer science by O'Donnell, Saks, Schramm, and Servedio, together with experimental data on complexes from Hachimori's library and on chessboard complexes, provide some evidence that the constructed discrete Morse functions are efficient.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 30 条
  • [1] [Anonymous], 1958, Bull. Amer. Math. Soc.
  • [2] [Anonymous], 1993, Graduate Texts in Math.
  • [3] A DIFFICULTY IN THE CONCEPT OF SOCIAL WELFARE
    Arrow, Kenneth J.
    [J]. JOURNAL OF POLITICAL ECONOMY, 1950, 58 (04) : 328 - 346
  • [4] BEN-OR M., 1990, RANDOMNESS COMPUTATI, P91
  • [5] CHESSBOARD COMPLEXES AND MATCHING COMPLEXES
    BJORNER, A
    LOVASZ, L
    VRECICA, ST
    ZIVALJEVIC, RT
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 25 - 39
  • [6] Björner A, 2000, EXP MATH, V9, P275
  • [7] On discrete Morse functions and combinatorial decompositions
    Chari, MK
    [J]. DISCRETE MATHEMATICS, 2000, 217 (1-3) : 101 - 113
  • [8] DANARAJ G, 1978, ANN DISCRETE MATH, V2, P33
  • [9] Morse theory for cell complexes
    Forman, R
    [J]. ADVANCES IN MATHEMATICS, 1998, 134 (01) : 90 - 145
  • [10] Morse theory and evasiveness
    Forman, R
    [J]. COMBINATORICA, 2000, 20 (04) : 489 - 504