Nonlinear self-adjointness and conservation laws for a porous medium equation with absorption

被引:0
作者
Gandarias, M. L. [1 ]
Bruzon, M. S. [1 ]
机构
[1] Univ Cadiz, Dept Matemat, Cadiz 11510, Spain
来源
NONLINEAR AND MODERN MATHEMATICAL PHYSICS | 2013年 / 1562卷
关键词
Weak self-adjointness; Nonlinear self-adjointness; Symmetries; Partial differential equations; Conservation laws; Enter Keywords here; DIRECT CONSTRUCTION; SYMMETRIES; LAGRANGIANS;
D O I
10.1063/1.4828683
中图分类号
O59 [应用物理学];
学科分类号
摘要
We give conditions for a general porous medium equation to be nonlinear self-adjoint. By using the property of nonlinear self-adjointness we construct some conservation laws associated with classical and nonclassical generators of a porous medium equation with absorption.
引用
收藏
页码:65 / 70
页数:6
相关论文
共 12 条
[1]   Direct construction method for conservation laws of partial differential equations - Part II: General treatment [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :567-585
[2]   Direct construction of conservation laws from field equations [J].
Anco, SC ;
Bluman, G .
PHYSICAL REVIEW LETTERS, 1997, 78 (15) :2869-2873
[3]   Weak self-adjoint differential equations [J].
Gandarias, M. L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (26)
[4]   Classical point symmetries of a porous medium equation [J].
Gandarias, ML .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (03) :607-633
[5]   Nonclassical symmetries of a porous medium equation with absorption [J].
Gandarias, ML .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (17) :6081-6091
[6]   Nonlinear self-adjointness and conservation laws [J].
Ibragimov, N. H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (43)
[7]   Self-adjointness and conservation laws of a generalized Burgers equation [J].
Ibragimov, N. H. ;
Torrisi, M. ;
Tracina, R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (14)
[8]   Quasi self-adjoint nonlinear wave equations [J].
Ibragimov, N. H. ;
Torrisi, M. ;
Tracina, R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (44)
[9]   A new conservation theorem [J].
Ibragimov, Nail H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :311-328
[10]   Integrating factors, adjoint equations and Lagrangians [J].
Ibragimov, NH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) :742-757