A comparative analysis for spatio-temporal spreading patterns of emergency news

被引:12
作者
Si, Mingjiao [1 ,2 ]
Cui, Lizhen [1 ,2 ]
Guo, Wei [1 ,2 ]
Li, Qingzhong [1 ,2 ]
Liu, Lei [1 ,2 ]
Lu, Xudong [1 ,2 ]
Lu, Xin [3 ]
机构
[1] Shandong Univ, Sch Software, Jinan 250101, Peoples R China
[2] Joint SDU NTU Ctr Artificial Intelligence Res C F, Jinan 250101, Peoples R China
[3] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China
关键词
INFORMATION DIFFUSION; SOCIAL MEDIA; NETWORKS; TWITTER; TWEETS;
D O I
10.1038/s41598-020-76162-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding the propagation characteristics of online emergency news communication is of great importance to guiding emergency management and supporting the dissemination of vital information. However, existing methods are limited to the analysis of the dissemination of online information pertaining to a specific disaster event. To study the quantification of the general spreading patterns and unique dynamic evolution of emergency-related information, we build a systematic, comprehensive evaluation framework and apply it to 81 million reposts from Sina Weibo, Chinese largest online microblogging platform, and perform a comparative analysis with four other types of online information (political, social, techs, and entertainment news). We find that the spreading of emergency news generally exhibits a shorter life cycle, a shorter active period, and fewer fluctuations in the aftermath of the peak than other types of news, while propagation is limited to a few steps from the source. Furthermore, compared with other types of news, fewer users tend to repost the same piece of news multiple times, while user influence (which depends on the number of fans) has the least impact on the number of reposts for news of emergencies. These comparative results provide insights that will be useful in the context of disaster relief, emergency management, and other communication path prediction applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Spatio-temporal processes of knowledge creation
    Hautala, Johanna
    Jauhiainen, Jussi S.
    RESEARCH POLICY, 2014, 43 (04) : 655 - 668
  • [22] Reading urban land use through spatio-temporal and content analysis of geotagged Twitter data
    Iranmanesh, Aminreza
    Comert, Nevter Zafer
    Hoskara, Sebnem Onal
    GEOJOURNAL, 2022, 87 (04) : 2593 - 2610
  • [23] SocialWave: Visual Analysis of Spatio-temporal Diffusion of Information on Social Media
    Sun, Guodao
    Tang, Tan
    Peng, Tai-Quan
    Liang, Ronghua
    Wu, Yingcai
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (02)
  • [24] CAUSTA: Clifford Algebra-based Unified Spatio-Temporal Analysis
    Yuan, Linwang
    Yu, Zhaoyuan
    Chen, Shaofei
    Luo, Wen
    Wang, Yongjun
    Lue, Guonian
    TRANSACTIONS IN GIS, 2010, 14 : 59 - 83
  • [25] Automated image-based analysis of spatio-temporal fungal dynamics
    de Ulzurrun, G. Vidal-Diez
    Baetens, J. M.
    Van den Bulcke, J.
    Lopez-Molina, C.
    De Windt, I.
    De Baets, B.
    FUNGAL GENETICS AND BIOLOGY, 2015, 84 : 12 - 25
  • [26] Spatio-temporal mining of keywords for social media cross-social crawling of emergency events
    Autelitano, Andrea
    Pernici, Barbara
    Scalia, Gabriele
    GEOINFORMATICA, 2019, 23 (03) : 425 - 447
  • [27] Spatio-temporal mining of keywords for social media cross-social crawling of emergency events
    Andrea Autelitano
    Barbara Pernici
    Gabriele Scalia
    GeoInformatica, 2019, 23 : 425 - 447
  • [28] Analysing trends in the spatio-temporal behaviour patterns of mainland Chinese tourists and residents in Hong Kong based on Weibo data
    Su, Xing
    Spierings, Bas
    Dijst, Martin
    Tong, Ziqi
    CURRENT ISSUES IN TOURISM, 2020, 23 (12) : 1542 - 1558
  • [29] Spatio-Temporal Memory Attention for Image Captioning
    Ji, Junzhong
    Xu, Cheng
    Zhang, Xiaodan
    Wang, Boyue
    Song, Xinhang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7615 - 7628
  • [30] Spatio-temporal crime hotspots and the ambient population
    Malleson N.
    Andresen M.A.
    Crime Science, 4 (1)