A comparative analysis for spatio-temporal spreading patterns of emergency news

被引:12
|
作者
Si, Mingjiao [1 ,2 ]
Cui, Lizhen [1 ,2 ]
Guo, Wei [1 ,2 ]
Li, Qingzhong [1 ,2 ]
Liu, Lei [1 ,2 ]
Lu, Xudong [1 ,2 ]
Lu, Xin [3 ]
机构
[1] Shandong Univ, Sch Software, Jinan 250101, Peoples R China
[2] Joint SDU NTU Ctr Artificial Intelligence Res C F, Jinan 250101, Peoples R China
[3] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China
关键词
INFORMATION DIFFUSION; SOCIAL MEDIA; NETWORKS; TWITTER; TWEETS;
D O I
10.1038/s41598-020-76162-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding the propagation characteristics of online emergency news communication is of great importance to guiding emergency management and supporting the dissemination of vital information. However, existing methods are limited to the analysis of the dissemination of online information pertaining to a specific disaster event. To study the quantification of the general spreading patterns and unique dynamic evolution of emergency-related information, we build a systematic, comprehensive evaluation framework and apply it to 81 million reposts from Sina Weibo, Chinese largest online microblogging platform, and perform a comparative analysis with four other types of online information (political, social, techs, and entertainment news). We find that the spreading of emergency news generally exhibits a shorter life cycle, a shorter active period, and fewer fluctuations in the aftermath of the peak than other types of news, while propagation is limited to a few steps from the source. Furthermore, compared with other types of news, fewer users tend to repost the same piece of news multiple times, while user influence (which depends on the number of fans) has the least impact on the number of reposts for news of emergencies. These comparative results provide insights that will be useful in the context of disaster relief, emergency management, and other communication path prediction applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Spatio-temporal patterns of disaster impact and recovery in YouTube content
    Hladik, Jiri
    Herman, Lukas
    Snopkova, Dajana
    Konecny, Milan
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01) : 1 - 23
  • [2] Mining Rainfall Spatio-Temporal Patterns in Twitter: A Temporal Approach
    de Andrade, Sidgley Camargo
    Restrepo-Estrada, Camilo
    Delbem, Alexandre C. B.
    Mendiondo, Eduardo Mario
    de Albuquerque, Joao Porto
    SOCIETAL GEO-INNOVATION, 2017, : 19 - 37
  • [3] Spatio-Temporal Spreading of Mobile Malware: A Model Based on Difference Equations
    Martin del Rey, A.
    Hernandez Encinas, A.
    Martin Vaquero, J.
    Queiruga Dios, A.
    Rodriguez Sanchez, G.
    INTERNATIONAL JOINT CONFERENCE: CISIS'15 AND ICEUTE'15, 2015, 369 : 273 - 283
  • [4] Spatio-temporal analysis of forest modeling in Mexico
    Martinez-Santiago, Saira Y.
    Alvarado-Segura, Arturo A.
    Zamudio-Sanchez, Francisco J.
    Cristobal-Acevedo, David
    REVISTA CHAPINGO SERIE CIENCIAS FORESTALES Y DEL AMBIENTE, 2017, 23 (01) : 5 - 22
  • [5] Leaders and followers: quantifying consistency in spatio-temporal propagation patterns
    Kreuz, Thomas
    Satuvuori, Eero
    Pofahl, Martin
    Mulansky, Mario
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [6] Inferring synaptic connectivity from spatio-temporal spike patterns
    Van Bussel, Frank
    Kriener, Birgit
    Timme, Marc
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2011, 5
  • [7] fMRI Single Trial Discovery of Spatio-Temporal Brain Activity Patterns
    Allegra, Michele
    Seyed-Allaei, Shima
    Pizzagalli, Fabrizio
    Baftizadeh, Fahimeh
    Maieron, Marta
    Reverberi, Carlo
    Laio, Alessandro
    Amati, Daniele
    HUMAN BRAIN MAPPING, 2017, 38 (03) : 1421 - 1437
  • [8] Pulse of the City: Spatio-Temporal Twitter Content Analysis
    Lu, Yunan
    Kusmik, William A.
    Turaga, Deepak S.
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2020), 2020, : 33 - 39
  • [9] Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis
    Hassan Zadeh, Amir
    Zolbanin, Hamed M.
    Sharda, Ramesh
    Delen, Dursun
    INFORMATION SYSTEMS FRONTIERS, 2019, 21 (04) : 743 - 760
  • [10] Spatio-temporal prediction of freeway congestion patterns using discrete choice methods
    Metzger, Barbara
    Loder, Allister
    Kessler, Lisa
    Bogenberger, Klaus
    EURO JOURNAL ON TRANSPORTATION AND LOGISTICS, 2024, 13