N-ary Mathematical Morphology

被引:0
|
作者
Chevallier, Emmanuel [1 ]
Chevallier, Augustin [2 ]
Angulo, Jesus [1 ]
机构
[1] PSL Res Univ, MINES ParisTech, CMM, Paris, France
[2] Ecole Normale Super, Cachan, France
来源
MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING | 2015年 / 9082卷
关键词
Mathematical morphology; Labeled images; Image filtering; OPERATORS; IMAGES;
D O I
10.1007/978-3-319-18720-4_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mathematical morphology on binary images can be fully described by set theory. However, it is not sufficient to formulate mathematical morphology for grey scale images. This type of images requires the introduction of the notion of partial order of grey levels, together with the definition of sup and inf operators. More generally, mathematical morphology is now described within the context of the lattice theory. For a few decades, attempts are made to use mathematical morphology on multivariate images, such as color images, mainly based on the notion of vector order. However, none of these attempts has given fully satisfying results. Instead of aiming directly at the multivariate case we propose an extension of mathematical morphology to an intermediary situation: images composed of a finite number of independent unordered labels.
引用
收藏
页码:339 / 350
页数:12
相关论文
共 50 条
  • [21] Cartograms via mathematical morphology
    Sagar, B. S. Daya
    INFORMATION VISUALIZATION, 2014, 13 (01) : 42 - 58
  • [22] Compensatory fuzzy mathematical morphology
    Bouchet, Agustina
    Pastore, Juan I.
    Brun, Marcel
    Ballarin, Virginia L.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (06) : 1065 - 1072
  • [23] Mathematical Morphology on Directional Data
    Hauch, Konstantin
    Redenbach, Claudia
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2024, 66 (06) : 1019 - 1032
  • [24] Mathematical morphology for design and manufacturing
    Jimeno-Morenilla, Antonio
    Molina-Carmona, Rafael
    Sanchez-Romero, Jose-Luis
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (7-8) : 1753 - 1759
  • [25] Linguistic Interpretation of Mathematical Morphology
    Bouchet, Agustina
    Meschino, Gustavo
    Brun, Marcel
    Espin Andrade, Rafael
    Ballarin, Virginia
    PROCEEDINGS OF THE FOURTH INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY, KNOWLEDGE MANAGEMENT AND DECISION SUPPORT (EUREKA-2013), 2013, 51 : 8 - 16
  • [26] Compensatory fuzzy mathematical morphology
    Agustina Bouchet
    Juan I. Pastore
    Marcel Brun
    Virginia L. Ballarin
    Signal, Image and Video Processing, 2017, 11 : 1065 - 1072
  • [27] Neutrosophic Algebraic Mathematical Morphology
    Salama A.A.
    ElGhawalby H.
    Khalid H.E.
    Essa A.K.
    Mohammed A.A.
    Neutrosophic Sets and Systems, 2023, 61 : 426 - 464
  • [28] NONLOCAL AND MULTIVARIATE MATHEMATICAL MORPHOLOGY
    Lezoray, O.
    Elmoataz, A.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 129 - 132
  • [29] AUTOMATIC SEGMENTATION OF NEWBORN BRAIN MRI USING MATHEMATICAL MORPHOLOGY
    Gui, Laura
    Lisowski, Radoslaw
    Faundez, Tamara
    Hueppi, Petra S.
    Lazeyras, Francois
    Kocher, Michel
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 2026 - 2030
  • [30] Approaches to Multivalued Mathematical Morphology Based on Uncertain Reduced Orderings
    Sangalli, Mateus
    Valle, Marcos Eduardo
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING, ISMM 2019, 2019, 11564 : 228 - 240