High-performance supercapacitor based on multi-structural CuS@polypyrrole composites prepared by in situ oxidative polymerization

被引:146
作者
Peng, Hui [1 ]
Ma, Guofu [1 ]
Sun, Kanjun [2 ]
Mu, Jingjing [1 ]
Wang, Hui [1 ]
Lei, Ziqiang [1 ]
机构
[1] Northwest Normal Univ, Key Lab Ecoenvironm Related Polymer Mat, Key Lab Polymer Mat Gansu Prov, Coll Chem & Chem Engn,Minist Educ, Lanzhou 730070, Peoples R China
[2] Lanzhou City Univ, Coll Chem & Environm Sci, Lanzhou 730070, Peoples R China
基金
美国国家科学基金会;
关键词
COPPER SULFIDE; ELECTRODE MATERIAL; CARBON; NANOCOMPOSITES; NANOPARTICLES; CAPACITANCE; CONVERSION; STABILITY; GROWTH; MOS2;
D O I
10.1039/c3ta13859c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have developed a supercapacitor electrode composed of CuS microspheres with polypyrrole (PPy) uniformly inserted into the sheet-like subunit structure and coated onto the CuS surface to enhance the pseudocapacitive performance. Novel sphere-like CuS particles with intertwined sheet-like subunit structure are fabricated by a solvothermal approach without any surfactant or template. A CuS@PPy composite electrode is prepared by in situ oxidation polymerization of pyrrole in the presence of the CuS suspension. The CuS@PPy composite (CuS content is 16.7 wt%) exhibits a high specific capacitance of 427 F g(-1) (at 1 A g(-1)) and its capacitance can still retain 88% after 1000 cycles.
引用
收藏
页码:3303 / 3307
页数:5
相关论文
共 27 条
[1]   In situ growth of copper sulfide nanoparticles on ordered mesoporous carbon and their application as nonenzymatic amperometric sensor of hydrogen peroxide [J].
Bo, Xiangjie ;
Bai, Jing ;
Wang, Lixia ;
Guo, Liping .
TALANTA, 2010, 81 (1-2) :339-345
[2]   In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang .
CHEMICAL COMMUNICATIONS, 2011, 47 (14) :4252-4254
[3]   Growth of single-crystal copper sulfide thin films via electrodeposition in ionic liquid media for lithium ion batteries [J].
Chen, Yunhua ;
Davoisne, Carine ;
Tarascon, Jean-Marie ;
Guery, Claude .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (12) :5295-5299
[4]   Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors [J].
Hou, Linrui ;
Yuan, Changzhou ;
Li, Diankai ;
Yang, Long ;
Shen, Laifa ;
Zhang, Fang ;
Zhang, Xiaogang .
ELECTROCHIMICA ACTA, 2011, 56 (22) :7454-7459
[5]   Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions [J].
Jayalakshmi, M ;
Rao, MM ;
Choudary, BM .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (11) :1119-1122
[6]   CoS spheres for high-rate electrochemical capacitive energy storage application [J].
Justin, P. ;
Rao, G. Ranga .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (18) :9709-9715
[7]   Principles and applications of electrochemical capacitors [J].
Kötz, R ;
Carlen, M .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2483-2498
[8]   Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage [J].
Lai, Chen-Ho ;
Lu, Ming-Yen ;
Chen, Lih-Juann .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (01) :19-30
[9]   Conducting polymer nanomaterials: electrosynthesis and applications [J].
Li, Chun ;
Bai, Hua ;
Shi, Gaoquan .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (08) :2397-2409
[10]   WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors [J].
Lu, Xihong ;
Zhai, Teng ;
Zhang, Xianghui ;
Shen, Yongqi ;
Yuan, Longyan ;
Hu, Bin ;
Gong, Li ;
Chen, Jian ;
Gao, Yihua ;
Zhou, Jun ;
Tong, Yexiang ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2012, 24 (07) :938-+