Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films

被引:76
作者
Zhao, H. [1 ,2 ]
Fan, Z. [3 ]
Liang, H. [2 ]
Selopal, G. S. [1 ]
Gonfa, B. A. [2 ]
Jin, L. [2 ]
Soudi, A. [2 ]
Cui, D. [2 ]
Enrichi, F. [5 ]
Natile, M. M. [6 ,7 ]
Concina, I. [1 ,4 ]
Ma, D. [2 ]
Govorov, A. O. [3 ]
Rosei, F. [2 ,8 ]
Vomiero, A. [1 ,2 ]
机构
[1] CNR INO SENSOR Lab, I-25123 Brescia, Italy
[2] Inst Natl Rech Sci, Varennes, PQ J3X 1S2, Canada
[3] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
[4] Univ Brescia, SENSOR Lab, Dept Informat Engn, I-25133 Brescia, Italy
[5] Lab Nanofab Veneto Nanotech, I-30175 Marghera, Italy
[6] CNR IENI, I-35131 Padua, Italy
[7] Univ Padua, Dept Chem Sci, I-35131 Padua, Italy
[8] McGill Univ, Ctr Self Assembled Chem Struct, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SOLAR-CELLS; CHARGE-TRANSFER; TIO2; NANOCRYSTALS; HETEROJUNCTIONS; PHOTOVOLTAICS; NANOPARTICLES; INJECTION; EMISSION;
D O I
10.1039/c4nr01562b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
N-type metal oxide solar cells sensitized by infrared absorbing PbS quantum dots (QDs) represent a promising alternative to traditional photovoltaic devices. However, colloidal PbS QDs capped with pure organic ligand shells suffer from surface oxidation that affects the long term stability of the cells. Application of a passivating CdS shell guarantees the increased long term stability of PbS QDs, but can negatively affect photoinduced charge transfer from the QD to the oxide and the resulting photoconversion efficiency (PCE). For this reason, the characterization of electron injection rates in these systems is very important, yet has never been reported. Here we investigate the photoelectron transfer rate from PbS@CdS core@shell QDs to wide bandgap semiconducting mesoporous films using photoluminescence (PL) lifetime spectroscopy. The different electron affinity of the oxides (SiO2, TiO2 and SnO2), the core size and the shell thickness allow us to fine tune the electron injection rate by determining the width and height of the energy barrier for tunneling from the core to the oxide. Theoretical modeling using the semi-classical approximation provides an estimate for the escape time of an electron from the QD 1S state, in good agreement with experiments. The results demonstrate the possibility of obtaining fast charge injection in near infrared (NIR) QDs stabilized by an external shell (injection rates in the range of 110-250 ns for TiO2 films and in the range of 100-170 ns for SnO2 films for PbS cores with diameters in the 3-4.2 nm range and shell thickness around 0.3 nm), with the aim of providing viable solutions to the stability issues typical of NIR QDs capped with pure organic ligand shells.
引用
收藏
页码:7004 / 7011
页数:8
相关论文
共 35 条
[1]   Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes [J].
Braga, Antonio ;
Gimenez, Sixto ;
Concina, Isabella ;
Vomiero, Alberto ;
Mora-Sero, Ivan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (05) :454-460
[2]   Low-Temperature Solution-Processed Solar Cells Based on PbS Colloidal Quantum Dot/CdS Heterojunctions [J].
Chang, Liang-Yi ;
Lunt, Richard R. ;
Brown, Patrick R. ;
Bulovic, Vladimir ;
Bawendi, Moungi G. .
NANO LETTERS, 2013, 13 (03) :994-999
[3]   High-performance crosslinked colloidal quantum-dot light-emitting diodes [J].
Cho, Kyung-Sang ;
Lee, Eun Kyung ;
Joo, Won-Jae ;
Jang, Eunjoo ;
Kim, Tae-Ho ;
Lee, Sang Jin ;
Kwon, Soon-Jae ;
Han, Jai Yong ;
Kim, Byung-Ki ;
Choi, Byoung Lyong ;
Kim, Jong Min .
NATURE PHOTONICS, 2009, 3 (06) :341-345
[4]   Resonant energy transfer in PbS quantum dots [J].
Clark, Stephen W. ;
Harbold, Jeffrey M. ;
Wise, Frank W. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (20) :7302-7305
[5]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[6]   Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe [J].
Danek, M ;
Jensen, KF ;
Murray, CB ;
Bawendi, MG .
CHEMISTRY OF MATERIALS, 1996, 8 (01) :173-180
[7]   The Different Nature of Band Edge Absorption and Emission in Colloidal PbSe/CdSe Core/Shell Quantum Dots [J].
De Geyter, Bram ;
Justo, Yolanda ;
Moreels, Iwan ;
Lambert, Karel ;
Smet, Philippe F. ;
Van Thourhout, Dries ;
Houtepen, Arjan J. ;
Grodzinska, Dominika ;
Donega, Celso de Mello ;
Meijerink, Andries ;
Vanmaekelbergh, Daniel ;
Hens, Zeger .
ACS NANO, 2011, 5 (01) :58-66
[8]   Ultrafast Charge Separation at the CdSe/CdS Core/Shell Quantum Dot/Methylviologen Interface: Implications for Nanocrystal Solar Cells [J].
Dworak, Lars ;
Matylitsky, Victor V. ;
Breus, Vladimir V. ;
Braun, Markus ;
Basche, Thomas ;
Wachtveitl, Josef .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (10) :3949-3955
[9]   Core/Shell PbSe/PbS QDs TiO2 Heterojunction Solar Cell [J].
Etgar, Lioz ;
Yanover, Diana ;
Capek, Richard Karel ;
Vaxenburg, Roman ;
Xue, Zhaosheng ;
Liu, Bin ;
Nazeeruddin, Mohammad Khaja ;
Lifshitz, Efrat ;
Graetzel, Michael .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (21) :2736-2741
[10]   Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays [J].
Gonfa, Belete Atomsa ;
Zhao, Haiguang ;
Li, Jiangtian ;
Qiu, Jingxia ;
Saidani, Menouer ;
Zhang, Shanqing ;
Izquierdo, Ricardo ;
Wu, Nianqiang ;
El Khakani, My Ali ;
Ma, Dongling .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 124 :67-74