Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations
被引:77
|
作者:
Serdio, Francisco
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, AustriaJohannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
Serdio, Francisco
[1
]
Lughofer, Edwin
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, AustriaJohannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
Lughofer, Edwin
[1
]
Pichler, Kurt
论文数: 0引用数: 0
h-index: 0
机构:
Austrian Competence Ctr Mechatron, Linz, AustriaJohannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
Pichler, Kurt
[2
]
Buchegger, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Austrian Competence Ctr Mechatron, Linz, AustriaJohannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
Buchegger, Thomas
[2
]
Pichler, Markus
论文数: 0引用数: 0
h-index: 0
机构:
Austrian Competence Ctr Mechatron, Linz, AustriaJohannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
Pichler, Markus
[2
]
Efendic, Hajrudin
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Kepler Univ Linz, Inst Design & Control Mechatron Syst, Linz, AustriaJohannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
Efendic, Hajrudin
[3
]
机构:
[1] Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
[2] Austrian Competence Ctr Mechatron, Linz, Austria
[3] Johannes Kepler Univ Linz, Inst Design & Control Mechatron Syst, Linz, Austria
We introduce the usage of multivariate orthogonal space transformations and vectorized time-series models in combination with data-driven system identification models to achieve an enhanced performance of residual-based fault detection in condition monitoring systems equipped with multi-sensor networks. Neither time-consuming annotated samples nor fault patterns/models need to be available, as our approach is solely based on on-line recorded data streams. The system identification step acts as a fusion operation by searching for relations and dependencies between sensor channels measuring the state of system variables. We therefore apply three different vectorized time-series variants: (i) non-linear finite impulse response models (NFIR) relying only on the lagged input variables, (ii) non-linear output error models (NOE), also including the lags of the own predictions and (iii) non-linear Box-Jenkins models (NBJ) which include the lags of the predictions errors as well. The use of multivariate orthogonal space transformations allows to produce more compact and accurate models due to an integrated dimensionality (noise) reduction step. Fault detection is conducted based on finding anomalies (untypical occurrences) in the temporal residual signal in incremental manner. Our experimental results achieved on four real-world condition monitoring scenarios employing multi-sensor network systems demonstrate that the Receiver Operating Characteristic (ROC) curves are improved over those ones achieved with native static models (w/o lags, w/o transformations) by about 20-30%. (C) 2014 Elsevier B.V. All rights reserved.
机构:
Univ Fed Bahia, Grad Program Ind Engn, Polytech Sch, Rua Aristides Novis 2, BR-40110630 Salvador, BA, BrazilUniv Fed Bahia, Grad Program Ind Engn, Polytech Sch, Rua Aristides Novis 2, BR-40110630 Salvador, BA, Brazil
Fontes, Cristiano Hora
Pereira, Otacilio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Bahia, Grad Program Ind Engn, Polytech Sch, Rua Aristides Novis 2, BR-40110630 Salvador, BA, BrazilUniv Fed Bahia, Grad Program Ind Engn, Polytech Sch, Rua Aristides Novis 2, BR-40110630 Salvador, BA, Brazil
机构:
Sogang Univ, Dept Mech Engn, Seoul 04107, South KoreaSogang Univ, Dept Mech Engn, Seoul 04107, South Korea
Seo, Jaedeok
Kim, Wonjung
论文数: 0引用数: 0
h-index: 0
机构:
Sogang Univ, Dept Mech Engn, Seoul 04107, South Korea
Sogang Univ, Inst Emergent Mat, Seoul 04107, South KoreaSogang Univ, Dept Mech Engn, Seoul 04107, South Korea
Kim, Wonjung
Lee, Jeongsu
论文数: 0引用数: 0
h-index: 0
机构:
Gachon Univ, Dept Mech Smart & Ind Engn, Seongnam 13120, South KoreaSogang Univ, Dept Mech Engn, Seoul 04107, South Korea
机构:
China Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R ChinaChina Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R China
Peng, Huaqing
Li, Heng
论文数: 0引用数: 0
h-index: 0
机构:
China Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R ChinaChina Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R China
Li, Heng
Zhang, Yu
论文数: 0引用数: 0
h-index: 0
机构:
China Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R ChinaChina Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R China
Zhang, Yu
Wang, Siyuan
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Elect & Power Engn, Taiyuan 030024, Peoples R ChinaChina Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R China
Wang, Siyuan
Gu, Kai
论文数: 0引用数: 0
h-index: 0
机构:
China Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R ChinaChina Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R China
Gu, Kai
Ren, Mifeng
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Elect & Power Engn, Taiyuan 030024, Peoples R ChinaChina Nucl Power Engn Co Ltd, State Key Lab Nucl Power Safety Monitoring Techno, Shenzhen 518172, Peoples R China
机构:
Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
Hunan Univ, Natl Engn Res Ctr Robot Vis Percept & Control Tec, Changsha 410082, Peoples R ChinaHunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
Li, Zhe
Liu, Kexin
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
Hunan Univ, Natl Engn Res Ctr Robot Vis Percept & Control Tec, Changsha 410082, Peoples R ChinaHunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
Liu, Kexin
Wang, Xudong
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Sch Robot, Changsha 410082, Peoples R China
Hunan Univ, Natl Engn Res Ctr Robot Vis Percept & Control Tec, Changsha 410082, Peoples R ChinaHunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
Wang, Xudong
Yuan, Xiaofang
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
Hunan Univ, Natl Engn Res Ctr Robot Vis Percept & Control Tec, Changsha 410082, Peoples R ChinaHunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
Yuan, Xiaofang
Xie, He
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Sch Robot, Changsha 410082, Peoples R China
Hunan Univ, Natl Engn Res Ctr Robot Vis Percept & Control Tec, Changsha 410082, Peoples R ChinaHunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
Xie, He
Wang, Yaonan
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
Hunan Univ, Natl Engn Res Ctr Robot Vis Percept & Control Tec, Changsha 410082, Peoples R ChinaHunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China