Lower Bounds for DNF-Refutations of a Relativized Weak Pigeonhole Principle

被引:3
作者
Atserias, Albert [1 ]
Mueller, Moritz [2 ]
Oliva, Sergi [1 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
[2] Kurt Godel Res Ctr, Vienna, Austria
来源
2013 IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC) | 2013年
基金
奥地利科学基金会;
关键词
RESOLUTION LOWER BOUNDS; RANDOM FORMULAS; PROOFS; COMPLEXITY; SIZE;
D O I
10.1109/CCC.2013.20
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The relativized weak pigeonhole principle states that if at least 2n out of n(2) pigeons fly into n holes, then some hole must be doubly occupied. We prove that every DNF-refutation of the CNF encoding of this principle requires size 2 (log n)(3/2-epsilon) for every epsilon > 0 and every sufficiently large n. For its proof we need to discuss the existence of unbalanced low-degree bipartite expanders satisfying a certain robustness condition.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 26 条
[11]   POLYNOMIAL SIZE PROOFS OF THE PROPOSITIONAL PIGEONHOLE PRINCIPLE [J].
BUSS, SR .
JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (04) :916-927
[12]   RELATIVE EFFICIENCY OF PROPOSITIONAL PROOF SYSTEMS [J].
COOK, SA ;
RECKHOW, RA .
JOURNAL OF SYMBOLIC LOGIC, 1979, 44 (01) :36-50
[13]  
Dantchev S, 2003, LECT NOTES COMPUT SC, V2803, P142
[14]   PARITY, CIRCUITS, AND THE POLYNOMIAL-TIME HIERARCHY [J].
FURST, M ;
SAXE, JB ;
SIPSER, M .
MATHEMATICAL SYSTEMS THEORY, 1984, 17 (01) :13-27
[15]   THE INTRACTABILITY OF RESOLUTION [J].
HAKEN, A .
THEORETICAL COMPUTER SCIENCE, 1985, 39 (2-3) :297-308
[16]   AN EXPONENTIAL LOWER-BOUND TO THE SIZE OF BOUNDED DEPTH FREGE PROOFS OF THE PIGEONHOLE PRINCIPLE [J].
KRAJICEK, J ;
PUDLAK, P ;
WOODS, A .
RANDOM STRUCTURES & ALGORITHMS, 1995, 7 (01) :15-39
[17]   On the weak pigeonhole principle [J].
Krajícek, J .
FUNDAMENTA MATHEMATICAE, 2001, 170 (1-2) :123-140
[18]  
Krajicek Jan, 1995, Encyclopedia of Mathematics and Its Applications, V60
[19]   A new proof of the weak pigeonhole principle [J].
Maciel, A ;
Pitassi, T ;
Woods, AR .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 64 (04) :843-872
[20]   A REMARK ON STIRLINGS FORMULA [J].
MARIA, AJ .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (10) :1096-&