Lower Bounds for DNF-Refutations of a Relativized Weak Pigeonhole Principle

被引:3
作者
Atserias, Albert [1 ]
Mueller, Moritz [2 ]
Oliva, Sergi [1 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
[2] Kurt Godel Res Ctr, Vienna, Austria
来源
2013 IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC) | 2013年
基金
奥地利科学基金会;
关键词
RESOLUTION LOWER BOUNDS; RANDOM FORMULAS; PROOFS; COMPLEXITY; SIZE;
D O I
10.1109/CCC.2013.20
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The relativized weak pigeonhole principle states that if at least 2n out of n(2) pigeons fly into n holes, then some hole must be doubly occupied. We prove that every DNF-refutation of the CNF encoding of this principle requires size 2 (log n)(3/2-epsilon) for every epsilon > 0 and every sufficiently large n. For its proof we need to discuss the existence of unbalanced low-degree bipartite expanders satisfying a certain robustness condition.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 26 条
[1]  
[Anonymous], COMPUTATIONAL COMPLE
[2]  
[Anonymous], PSEUDORANDOM G UNPUB
[3]  
[Anonymous], IEEETRANSACTIONSONED, DOI DOI 10.1109/13.965782
[4]  
[Anonymous], 2001, RANDOM GRAPHS
[5]  
[Anonymous], DIMACS SERIES DISCRE
[6]   Lower bounds for the weak pigeonhole principle and random formulas beyond resolution [J].
Atserias, A ;
Bonet, ML ;
Esteban, JL .
INFORMATION AND COMPUTATION, 2002, 176 (02) :136-152
[7]   On sufficient conditions for unsatisfiability of random formulas [J].
Atserias, A .
JOURNAL OF THE ACM, 2004, 51 (02) :281-311
[8]   Improved bounds on the Weak Pigeonhole Principle and infinitely many primes from weaker axioms [J].
Atserias, A .
THEORETICAL COMPUTER SCIENCE, 2003, 295 (1-3) :27-39
[9]   Space complexity of random formulae in resolution [J].
Ben-Sasson, E ;
Galesi, N .
RANDOM STRUCTURES & ALGORITHMS, 2003, 23 (01) :92-109
[10]   Short proofs are narrow - Resolution made simple [J].
Ben-Sasson, E ;
Wigderson, A .
JOURNAL OF THE ACM, 2001, 48 (02) :149-169