Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere

被引:30
作者
Chunchuzov, I. [1 ]
Kulichkov, S. [1 ]
Perepelkin, V. [1 ]
Popov, O. [1 ]
Firstov, P. [2 ]
Assink, J. D. [3 ]
Marchetti, E. [4 ]
机构
[1] Obukhov Inst Atmospher Phys, Moscow, Russia
[2] Inst Volcanol & Seismol, Petropavlovsk Kamchatski, Russia
[3] Univ Mississippi, Natl Ctr Phys Acoust, Oxford, MS USA
[4] Univ Florence, Dipartimento Sci Terra, I-50121 Florence, Italy
基金
俄罗斯科学基金会;
关键词
PROPAGATION; TEMPERATURE; PARAMETERIZATION; SPECTRUM; SIGNALS; MODELS; RADARS;
D O I
10.1002/2015JD023276
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The wind velocity structure in the upper stratosphere, mesosphere, and lower thermosphere (MLT) is studied with the recently developed method of infrasound probing of the atmosphere. The method is based on the effect of infrasound scattering from highly anisotropic wind velocity and temperature inhomogeneities in the middle and upper atmosphere. The scattered infrasound field propagates in the acoustic shadow zones, where it is detected by microbarometers. The vertical profiles of the wind velocity fluctuations in the upper stratosphere (30-52km) and MLT (90-140 km) are retrieved from the waveforms and travel times of the infrasound signals generated by explosive sources such as volcanoes and surface explosions. The fine-scale wind-layered structure in these layers was poorly observed until present time by other remote sensing methods, including radars and satellites. It is found that the MLT atmospheric layer (90-102 km) can contain extremely high vertical gradients of the wind velocity, up to 10m/s per 100 m. The effect of a fine-scale wind velocity structure on the waveforms of infrasound signals is studied. The vertical wave number spectra of the retrieved wind velocity fluctuations are obtained for the upper stratosphere. Despite the difference in the locations of the explosive sources all the obtained spectra show the existence of high vertical wave number spectral tail with a -3 power law decay. The obtained spectral characteristics of the wind fluctuations are necessary for improvement of gravity wave drag parameterizations for numerical weather forecast.
引用
收藏
页码:8828 / 8840
页数:13
相关论文
共 52 条
[1]   Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models [J].
Alexander, M. J. ;
Geller, M. ;
McLandress, C. ;
Polavarapu, S. ;
Preusse, P. ;
Sassi, F. ;
Sato, K. ;
Eckermann, S. ;
Ern, M. ;
Hertzog, A. ;
Kawatani, Y. ;
Pulido, M. ;
Shaw, T. A. ;
Sigmond, M. ;
Vincent, R. ;
Watanabe, S. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (650) :1103-1124
[2]   Gravity-wave forcing in the stratosphere: Observational constraints from the Upper Atmosphere Research Satellite and implications for parameterization in global models [J].
Alexander, MJ ;
Rosenlof, KH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D19)
[3]  
[Anonymous], 2010, INFR MON ATM STUD, DOI DOI 10.1007/978-1-4020-9508-5_1
[4]   The estimation of upper atmospheric wind model updates from infrasound data [J].
Assink, J. D. ;
Waxler, R. ;
Frazier, W. G. ;
Lonzaga, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (19) :10707-10724
[5]   On the sensitivity of infrasonic traveltimes in the equatorial region to the atmospheric tides [J].
Assink, J. D. ;
Waxler, R. ;
Drob, D. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[6]  
AVILOV KV, 1995, ACOUST PHYS+, V41, P1
[7]  
Blokhintsev D. I., 1956, ACOUSTICS NONHOMOGEN, V1399
[8]  
Chibisov S. V., 1940, IZV AKAD NAUK GG, V4, P475
[9]   Modeling propagation of infrasound signals observed by a dense seismic network [J].
Chunchuzov, I. ;
Kulichkov, S. ;
Popov, O. ;
Hedlin, M. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 135 (01) :38-48
[10]  
Chunchuzov I, 2002, J ATMOS SCI, V59, P1753, DOI 10.1175/1520-0469(2002)059<1753:OTHWFO>2.0.CO