A Novel Approach Utilizing Biofilm Time-Kill Curves To Assess the Bactericidal Activity of Ceftaroline Combinations against Biofilm-Producing Methicillin-Resistant Staphylococcus aureus

被引:41
作者
Barber, Katie E. [1 ]
Werth, Brian J. [1 ]
McRoberts, John P. [1 ]
Rybak, Michael J. [1 ,2 ]
机构
[1] Wayne State Univ, Sch Med, Eugene Applebaum Coll Pharm & Hlth Sci, Antiinfect Res Lab, Detroit, MI 48202 USA
[2] John D Dingell Vet Affairs Med Ctr, Detroit, MI USA
关键词
CLINICAL-PRACTICE GUIDELINES; INFECTIOUS-DISEASES SOCIETY; IN-VITRO MODEL; ANTIMICROBIAL AGENTS; DEVICE; DAPTOMYCIN; VANCOMYCIN; MANAGEMENT; DIAGNOSIS; RIFAMPIN;
D O I
10.1128/AAC.02764-13
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Medical device infections frequently require combination therapy. Beta-lactams combined with glycopeptides/lipopeptides are bactericidal against methicillin-resistant Staphylococcus aureus (MRSA). Novel macrowell kill-curve methods tested synergy between ceftaroline or cefazolin plus daptomycin, vancomycin, or rifampin against biofilm-producing MRSA. Ceftaroline combinations demonstrated the most pronounced bacterial reductions. Ceftaroline demonstrated greatest kill with daptomycin (4.02 +/- 0.59 log(10) CFU/cm(2)), compared to combination with vancomycin (3.36 +/- 0.35 log(10) CFU/cm(2)) or rifampin (2.68 +/- 0.61 log(10) CFU/cm(2)). These data suggest that beta-lactam combinations are useful against MRSA biofilms.
引用
收藏
页码:2989 / 2992
页数:4
相关论文
共 25 条
[1]  
American Society for Microbiology, ANTIMICROB AGENTS CH, V52, P1
[2]   Mutation of sarA in Staphylococcus aureus limits biofilm formation [J].
Beenken, KE ;
Blevins, JS ;
Smeltzer, MS .
INFECTION AND IMMUNITY, 2003, 71 (07) :4206-4211
[3]   IN-VIVO VERIFICATION OF IN-VITRO MODEL OF ANTIBIOTIC-TREATMENT OF DEVICE-RELATED INFECTION [J].
BLASER, J ;
VERGERES, P ;
WIDMER, AF ;
ZIMMERLI, W .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1995, 39 (05) :1134-1139
[4]   The MBEC assay system: Multiple equivalent biofilms for antibiotic and biocide susceptibility testing [J].
Ceri, H ;
Olson, M ;
Morck, D ;
Storey, D ;
Read, R ;
Buret, A ;
Olson, B .
MICROBIAL GROWTH IN BIOFILMS, PT B: SPECIAL ENVIRONMENTS AND PHYSICOCHEMICAL ASPECTS, 2001, 337 :377-385
[5]   The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms [J].
Ceri, H ;
Olson, ME ;
Stremick, C ;
Read, RR ;
Morck, D ;
Buret, A .
JOURNAL OF CLINICAL MICROBIOLOGY, 1999, 37 (06) :1771-1776
[6]   ADHERENCE OF COAGULASE-NEGATIVE STAPHYLOCOCCI TO PLASTIC TISSUE-CULTURE PLATES - A QUANTITATIVE MODEL FOR THE ADHERENCE OF STAPHYLOCOCCI TO MEDICAL DEVICES [J].
CHRISTENSEN, GD ;
SIMPSON, WA ;
YOUNGER, JJ ;
BADDOUR, LM ;
BARRETT, FF ;
MELTON, DM ;
BEACHEY, EH .
JOURNAL OF CLINICAL MICROBIOLOGY, 1985, 22 (06) :996-1006
[7]   Biofilms: Survival mechanisms of clinically relevant microorganisms [J].
Donlan, RM ;
Costerton, JW .
CLINICAL MICROBIOLOGY REVIEWS, 2002, 15 (02) :167-+
[8]   In vitro effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus lugdunensis clinical isolates [J].
Frank, Kristi L. ;
Reichert, Emily J. ;
Piper, Kerryl E. ;
Patel, Robin .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2007, 51 (03) :888-895
[9]   Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces [J].
Gross, M ;
Cramton, SE ;
Götz, F ;
Peschel, A .
INFECTION AND IMMUNITY, 2001, 69 (05) :3423-3426
[10]   Bacterial biofilms: From the natural environment to infectious diseases [J].
Hall-Stoodley, L ;
Costerton, JW ;
Stoodley, P .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (02) :95-108