Atomistic calculation of the thermoelectric properties of Si nanowires

被引:6
|
作者
Bejenari, I. [1 ,2 ,3 ]
Kratzer, P. [1 ,2 ]
机构
[1] Univ Duisburg Essen, Fak Phys, D-47048 Duisburg, Germany
[2] Univ Duisburg Essen, Ctr Nanointegrat CENIDE, D-47048 Duisburg, Germany
[3] Moldavian Acad Sci, Inst Elect Engn & Nanotechnol, MD-2028 Kishinev, Moldova
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 04期
关键词
SILICON NANOWIRES; TRANSPORT-PROPERTIES; BAND-STRUCTURE; GERMANIUM; GROWTH;
D O I
10.1103/PhysRevB.90.045429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermoelectric properties of 1.6-nm-thick Si square nanowires with [100] crystalline orientation are calculated over a wide temperature range from 0 K to 1000 K, taking into account atomistic electron-phonon interaction. In our model, the [010] and [001] facets are passivated by hydrogen and there are Si-Si dimers on the nanowire surface. The electronic structure was calculated by using the sp(3) spin-orbit-coupled atomistic second-nearest-neighbor tight-binding model. The phonon dispersion was calculated from a valence force field model of the Brenner type. A scheme for calculating electron-phonon matrix elements from a second-nearest-neighbor tight-binding model is presented. Based on Fermi's golden rule, the electron-phonon transition rate was obtained by combining the electron and phonon eigenstates. Both elastic and inelastic scattering processes are taken into consideration. The temperature dependence of transport characteristics was calculated by using a solution of the linearized Boltzmann transport equation obtained by means of the iterative orthomin method. At room temperature, the electron mobility is 195 cm(2) V-1 s(-1) and increases with temperature, while a figure of merit ZT = 0.38 is reached for n-type doping with a concentration of n = 10(19) cm (3).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Atomistic design of thermoelectric properties of silicon nanowires
    Vo, Trinh T. M.
    Williamson, Andrew J.
    Lordi, Vincenzo
    Galli, Giulia
    NANO LETTERS, 2008, 8 (04) : 1111 - 1114
  • [2] Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties
    Markussen, Troels
    Jauho, Antti-Pekka
    Brandbyge, Mads
    PHYSICAL REVIEW B, 2009, 79 (03):
  • [3] Thermoelectric Properties of InA Nanowires from Full-Band Atomistic Simulations
    Archetti, Damiano
    Neophytou, Neophytos
    MOLECULES, 2020, 25 (22):
  • [4] Energetics of {105}-faceted Ge nanowires on Si(001): An atomistic calculation of edge contributions
    Retford, C. M.
    Asta, M.
    Miksis, M. J.
    Voorhees, P. W.
    Webb, E. B., III
    PHYSICAL REVIEW B, 2007, 75 (07)
  • [5] Nanograin Effects on the Thermoelectric Properties of Poly-Si Nanowires
    N. Neophytou
    X. Zianni
    M. Ferri
    A. Roncaglia
    G. F. Cerofolini
    D. Narducci
    Journal of Electronic Materials, 2013, 42 : 2393 - 2401
  • [6] Nanograin Effects on the Thermoelectric Properties of Poly-Si Nanowires
    Neophytou, N.
    Zianni, X.
    Ferri, M.
    Roncaglia, A.
    Cerofolini, G. F.
    Narducci, D.
    JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (07) : 2393 - 2401
  • [7] Thermoelectric efficiency breakthrough in Si nanowires
    Walter, Patrick
    CHEMISTRY & INDUSTRY, 2008, (02) : 10 - 10
  • [8] Thermoelectric pellets made of Si nanowires
    Norris, Kate J.
    Tompa, Gary S.
    Sbrockey, Nick M.
    Kobayashi, Nobuhiko P.
    LOW-DIMENSIONAL MATERIALS AND DEVICES, 2015, 9553
  • [9] Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight-Binding Model
    Neophytos Neophytou
    Martin Wagner
    Hans Kosina
    Siegfried Selberherr
    Journal of Electronic Materials, 2010, 39 : 1902 - 1908
  • [10] Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight-Binding Model
    Neophytou, Neophytos
    Wagner, Martin
    Kosina, Hans
    Selberherr, Siegfried
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (09) : 1902 - 1908