A Chip-Scale, Low Cost PVD System

被引:2
|
作者
Barrett, Lawrence K. [1 ]
Lally, Richard W. [1 ]
Fuhr, Nicholas E. [1 ]
Stange, Alexander [1 ]
Bishop, David J. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Boston Univ, Div Mat Sci, Boston, MA 02215 USA
[2] Boston Univ, Elect & Comp Engn Dept, Boston, MA 02215 USA
[3] Boston Univ, Phys Dept, Boston, MA 02215 USA
[4] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[5] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Physical vapor deposition (PVD); evaporation; fab-on-a-chip; MEMS; mass sensor; quartz oscillator; film thickness monitor; phased locked loop; VAPOR-DEPOSITION; SOLID-STATE; MASS SENSOR; SILICON; FILMS; FAB;
D O I
10.1109/JMEMS.2020.3026533
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Standard physical vapor deposition systems are large, expensive, and slow. As part of an on-going effort to build a fab-on-a-chip, we have developed a chip-scale, low cost, fast physical vapor deposition system designed to be used with atomic calligraphy or dynamic stencil lithography to direct write nanostructures. The system comprises two MEMS devices: a chip-scale thermal evaporator and a mass sensor that serves as a film thickness monitor. Here, we demonstrate the functionality of both devices by depositing Pb thin-films. The thermal evaporator was made by fabless manufacturing using the SOIMUMPs processs (MEMSCAP, inc). It turns on in 1:46 s and reaches deposition rates as high as 7.2 angstrom s(-1) with similar to 1 mm separation from the target. The mass sensor is a re-purposed quartz oscillator (JTX210) that is commercially available for less than one dollar. Its resolution was measured to be 2.65 fg or 7.79E-5 monolayers of Pb. [2020-0237]
引用
收藏
页码:1547 / 1555
页数:9
相关论文
共 50 条
  • [21] Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks
    Straessle, R.
    Pellaton, M.
    Affolderbach, C.
    Petremand, Y.
    Briand, D.
    Mileti, G.
    de Rooij, N. F.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (06)
  • [22] Physical-Layer Modeling and System-Level Design of Chip-Scale Photonic Interconnection Networks
    Chan, Johnnie
    Hendry, Gilbert
    Bergman, Keren
    Carloni, Luca P.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2011, 30 (10) : 1507 - 1520
  • [23] A chip-scale chemical mechanical planarization model for copper interconnect structures
    Xu, Qinzhi
    Fang, Jingjing
    Chen, Lan
    MICROELECTRONIC ENGINEERING, 2016, 149 : 14 - 24
  • [24] Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics
    Xiong, Chi
    Pernice, Wolfram H. P.
    Sun, Xiankai
    Schuck, Carsten
    Fong, King Y.
    Tang, Hong X.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [25] A Micromachined Wiring Board With Integrated Microinductor for Chip-Scale Power Conversion
    Meyer, Christopher D.
    Bedair, Sarah S.
    Morgan, Brian C.
    Arnold, David P.
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (11) : 6052 - 6063
  • [26] Flexible Chip-Scale Package and Interconnect for Implantable MEMS Movable Microelectrodes for the Brain
    Jackson, Nathan
    Muthuswamy, Jit
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2009, 18 (02) : 396 - 404
  • [27] Chip-Scale Cooling of Power Semiconductor Devices Fabrication of Jet Impingement Design
    Zhou, Feng
    Jung, Ki Wook
    Fukuoka, Yuji
    Dede, Ercan M.
    PRODCEEDINGS OF THE 2018 IEEE 30TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES AND ICS (ISPSD), 2018, : 516 - 519
  • [28] Integrated Polarization-Splitting Grating Coupler for Chip-Scale Atomic Magnetometer
    Hu, Jinsheng
    Lu, Jixi
    Liang, Zihua
    Liu, Lu
    Wang, Weiyi
    Zhou, Peng
    Ye, Mao
    BIOSENSORS-BASEL, 2022, 12 (07):
  • [29] An all-sapphire Cs gas cell for a chip-scale atomic clock
    Kurashima, Yuichi
    Matsumae, Takashi
    Yanagimachi, Shinya
    Harasaka, Kazuhiro
    Takagi, Hideki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (09)
  • [30] Chip-Scale Frequency Comb Generators for High-Speed Communications and Optical Metrology
    Koos, C.
    Kippenberg, T. J.
    Barry, L. P.
    Ramdane, A.
    Lelarge, F.
    Freude, W.
    Marin, P.
    Kemal, J. N.
    Weimann, C.
    Wolf, S.
    Trocha, P.
    Pfeifle, J.
    Karpov, M.
    Kordts, A.
    Brasch, V.
    Watts, R. T.
    Vujicic, V.
    Martinez, A.
    Panapakkam, V.
    Chimot, N.
    LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XIX, 2017, 10090