The Algebraic Integrability of the Quantum Toda Lattice and the Radon Transform
被引:0
|
作者:
Ikeda, Kaoru
论文数: 0引用数: 0
h-index: 0
机构:
Keio Univ, Ctr Integrat Math Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, JapanKeio Univ, Ctr Integrat Math Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
Ikeda, Kaoru
[1
]
机构:
[1] Keio Univ, Ctr Integrat Math Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
Toda lattice;
Quantum completely integrable systems;
Algebraic integrability;
Radon transform;
D O I:
10.1007/s00041-008-9048-7
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the maximal commutative ring of partial differential operators which includes the quantum completely integrable system defined by the quantum Toda lattice. Kostant shows that the image of the generalized Harish-Chandra homomorphism of the center of the enveloping algebra is commutative (Kostant in Invent. Math. 48: 101-184, 1978). We demonstrate the commutativity of the ring of partial differential operators whose principal symbols are (N) over bar -invariant. Our commutative ring includes the commutative system of Kostant (Invent. Math. 48: 101-184, 1978). The main tools in this paper are Fourier integral operators and Radon transforms.
机构:
Univ Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,851 S Morgan St, Chicago, IL 60607 USAUniv Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,851 S Morgan St, Chicago, IL 60607 USA
机构:
Columbia Univ, New York, NY USAColumbia Univ, New York, NY USA
Krichever, I.
Zabrodin, A.
论文数: 0引用数: 0
h-index: 0
机构:
Skolkovo Inst Sci & Technol, Moscow 143026, Russia
Natl Res Univ Higher Sch Econ, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia
NRC KI KCTEP, Moscow, RussiaColumbia Univ, New York, NY USA