The Algebraic Integrability of the Quantum Toda Lattice and the Radon Transform

被引:0
|
作者
Ikeda, Kaoru [1 ]
机构
[1] Keio Univ, Ctr Integrat Math Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
关键词
Toda lattice; Quantum completely integrable systems; Algebraic integrability; Radon transform;
D O I
10.1007/s00041-008-9048-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the maximal commutative ring of partial differential operators which includes the quantum completely integrable system defined by the quantum Toda lattice. Kostant shows that the image of the generalized Harish-Chandra homomorphism of the center of the enveloping algebra is commutative (Kostant in Invent. Math. 48: 101-184, 1978). We demonstrate the commutativity of the ring of partial differential operators whose principal symbols are (N) over bar -invariant. Our commutative ring includes the commutative system of Kostant (Invent. Math. 48: 101-184, 1978). The main tools in this paper are Fourier integral operators and Radon transforms.
引用
收藏
页码:80 / 100
页数:21
相关论文
共 50 条
  • [21] Extended Toda lattice
    Carlet, G
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (01) : 1390 - 1395
  • [22] Integrability on generalized q-Toda equation and hierarchy
    Anni Meng
    Chuanzhong Li
    Shuo Huang
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 429 - 441
  • [23] On a Radon transform
    Gots, Ekaterina
    Lyakhov, Lev
    OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS, 2008, 181 : 187 - +
  • [24] The integrability of the 2-Toda lattice on sln(C) and its generalization to semi-simple Lie algebras.
    Ben Abdeljelil, Khaoula
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (15-16) : 943 - 946
  • [25] THE TODA LATTICE, OLD AND NEW
    Tomei, Carlos
    JOURNAL OF GEOMETRIC MECHANICS, 2013, 5 (04) : 511 - 530
  • [26] The modular hierarchy of the Toda lattice
    Agrotis, Maria A.
    Damianou, Pantelis A.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (06) : 655 - 666
  • [27] The Novel Solutions of the Toda Lattice
    孙梅娜
    杜丛民
    Journal of Shanghai University, 2004, (03) : 289 - 291
  • [28] Integrable Variants of the Toda Lattice
    Liu, Ya-Jie
    Wang, Hui Alan
    Chang, Xiang-Ke
    Hu, Xing-Biao
    Zhang, Ying-Nan
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (05)
  • [29] Inversion of the seismic parabolic Radon transform and the seismic hyperbolic Radon transform
    Moon, Sunghwan
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (02) : 317 - 327
  • [30] Hyperplane Integrability Conditions and Smoothing for Radon Transforms
    Michael Greenblatt
    The Journal of Geometric Analysis, 2021, 31 : 3683 - 3697