On the Number of Lattice Points in the Shifted Circles

被引:0
作者
Jabbarov, Ilgar Sh [1 ]
Aslanova, Natiga Sh [1 ]
Jeferli, Esmira, V [1 ]
机构
[1] Ganja State Univ, Az2000, Ganja, Azerbaijan
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2020年 / 10卷 / 02期
关键词
circle problem; lattice points; shifted circle; deviation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study the question: for a given r, is there any point (x; y) on the plane such that the deviation of the number of lattice points, contained inside the circle of radius r centered at this point, from the area of the disc has order O(r(1/2+epsilon)) for arbitrary positive number epsilon? We show that the answer for this question is positive.
引用
收藏
页码:175 / 190
页数:16
相关论文
共 14 条
[1]   DISTRIBUTION OF THE ERROR TERM FOR THE NUMBER OF LATTICE POINTS INSIDE A SHIFTED CIRCLE [J].
BLEHER, PM ;
CHENG, ZM ;
DYSON, FJ ;
LEBOWITZ, JL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :433-469
[2]  
Chandrasekharan Y.V., 1974, INTRO ANAL NUMBER TH
[3]  
Gelfand A.O., 1962, ELEMENTARNIE METODY
[4]  
Hardy G.H., 1915, Q. J. Math., V46, P263
[5]  
HUA LK, 1942, QUART J MATH, V13, P18
[6]   Exponential sums and lattice points III [J].
Huxley, MN .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 :591-609
[7]   ON THE DIVISOR AND CIRCLE PROBLEMS [J].
IWANIEC, H ;
MOZZOCHI, CJ .
JOURNAL OF NUMBER THEORY, 1988, 29 (01) :60-93
[8]  
Karatsuba A.A., 1982, OSNOVI ANALITICHESKO
[9]  
Keller H.B., 1963, MATH COMPUT, V17, P223
[10]  
Landau E., 1948, VVEDENIE DIFFERENSIA