共 42 条
The cyanobacterial neurotoxin β-N-methylamino-L-alanine prevents addition of heparan sulfate to glypican-1 and increases processing of amyloid precursor protein in dividing neuronal cells
被引:7
作者:
Cheng, Fang
[1
]
Fransson, Lars-Ake
[1
]
Mani, Katrin
[1
]
机构:
[1] Lund Univ, Dept Expt Med Sci, Div Neurosci, Glycobiol Grp,Biomed Ctr A13, SE-22184 Lund, Sweden
基金:
瑞典研究理事会;
关键词:
Alzheimer's disease;
Amyloid precursor protein;
Glypican-1;
Heparan sulfate;
Neuronal cells;
Neurotoxin;
AMINO-ACID;
DEGRADATION;
RELEASE;
DISEASE;
BMAA;
PROTEOGLYCAN;
ACCUMULATION;
TG2576;
APLP2;
D O I:
10.1016/j.yexcr.2019.03.041
中图分类号:
R73 [肿瘤学];
学科分类号:
100214 ;
摘要:
The neurotoxin beta-N-methylamino-L-alanine replaces L-serine in proteins and produces Alzheimer-like pathology. In proteoglycans, e.g. glypican-1, this should preclude substitution with heparan sulfate chains. Reduced release of heparan sulfate should increase beta-secretase activity and processing of amyloid precursor protein. Cultured cells were treated with beta-N-methylamino-L-alanine during the growth-phase and the effect on heparan sulfate substitution and amyloid precursor protein processing was evaluated using antibodies specific for heparan sulfate, the N- and C-termini of the C-terminal fragment of beta-cleaved amyloid precursor protein, and amyloid beta followed by immunofluorescence microscopy, flow cytometry or SDS-PAGE. Mouse fibroblasts, N2a neuroblastoma cells and human neural stem cells released less heparan sulfate when grown in the presence of beta-N-methylamino-L-alanine. Cells expressing a recombinant, anchor-less glypican-1 secreted heparan sulfate-deficient glypican-1. There was increased processing of amyloid precursor protein in N2a cells when grown in the presence of the neurotoxin. The degradation products accumulated in cytoplasmic clusters. Secretion of amyloid beta increased approx. 3-fold. Human neural stem cells also developed cytoplasmic clusters containing degradation products of amyloid precursor protein. When non-dividing mouse N2a cells or cortical neurons were exposed to beta-N-methylamino-L-alanine there was no effect on heparan sulfate substitution in glypican-1 or on amyloid precursor protein processing.
引用
收藏
页码:172 / 181
页数:10
相关论文