Radio-Frequency Ion Thrusters-Power Measurement and Power Distribution Modeling

被引:3
作者
Volkmar, C. [1 ]
Geile, C. [1 ]
Hannemann, K. [1 ]
机构
[1] German Aerosp Ctr, DLR, Inst Aerodynam & Flow Technol, Spacecraft Dept, Bunsenstr 10, D-37073 Gottingen, Germany
关键词
ELECTRIC PROPULSION; PERFORMANCE; PLASMA;
D O I
10.2514/1.B36868
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We present a methodology to measure the power delivered to sustain an inductive plasma discharge inside radio-frequency ion thrusters. This measurement is performed in real time near the coil within the resonant circuit using a patented low-noise radio-frequency voltage and current sensor system. With knowledge of the actual forwarded power, the efficiency of the generator under consideration, including the power feed cable, is assessed in real time. The variation of the power-to-thrust ratio can thus be understood more clearly since its value is given by physical changes of the plasma properties as well as the quality of the impedance bridge between the generator and plasma load. The latter can directly be determined by the proposed methodology, while the influence of the plasma parameters on the power-to-thrust ratio is obtained by means of a numerical model that is used in postprocessing to assess the power distribution within the thruster.
引用
收藏
页码:1061 / 1069
页数:9
相关论文
共 50 条
[31]   Effect of external magnetic field on ion energy density of collisional radio-frequency sheath [J].
Zou Xiu ;
Zou Bin-Yan ;
Liu Hui-Ping .
ACTA PHYSICA SINICA, 2009, 58 (09) :6392-6396
[32]   Influence of radio-frequency power on the state of H2/C4H8 glowing discharge plasma [J].
Li Rui ;
He Zhi-Bing ;
He Xiao-Shan ;
Niu Zhong-Cai ;
Yang Xiang-Dong .
ACTA PHYSICA SINICA, 2012, 61 (21)
[33]   The effect of the electron κ-distribution on the dust particle charging in the radio-frequency thermal-sheaths [J].
Shihab, M. ;
Elkamash, I. S. .
PHYSICA SCRIPTA, 2024, 99 (08)
[34]   Power absorption in electrically asymmetric dual frequency capacitive radio frequency discharges [J].
Schuengel, E. ;
Schulze, J. ;
Donko, Z. ;
Czarnetzki, U. .
PHYSICS OF PLASMAS, 2011, 18 (01)
[35]   Comparison of pulse-modulated and continuous operation modes of a radio-frequency inductive ion source [J].
Zadiriev, Ilya ;
Kralkina, Elena ;
Vavilin, Konstantin ;
Nikonov, Alexander ;
Shvidkiy, Georgy .
PLASMA SCIENCE & TECHNOLOGY, 2023, 25 (02)
[36]   Collisionless ion modeling in Hall thrusters: Analytical axial velocity distribution function and heat flux closures [J].
Boccelli, S. ;
Charoy, T. ;
Alvarez Laguna, A. ;
Chabert, P. ;
Bourdon, A. ;
Magin, T. E. .
PHYSICS OF PLASMAS, 2020, 27 (07)
[37]   Ion transit effects on sheath dynamics in the intermediate radio-frequency regime: excitations of ion-acoustic waves and solitons [J].
Shihab, M. ;
Elbadawy, A. ;
El-Siragy, N. M. ;
Afify, M. S. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (02)
[38]   Determining the 2D spatial distribution of plasma parameters in a cylindrical cross section of a radio-frequency ion thruster by optical emission spectroscopy [J].
Felix Becker ;
Pascal Sarnoch ;
Kristof Holste ;
Hans Leiter ;
Peter J. Klar .
Journal of Electric Propulsion, 4 (1)
[39]   Control of electron, ion and neutral heating in a radio-frequency electrothermal microthruster via dual-frequency voltage waveforms [J].
Doyle, Scott J. ;
Gibson, Andrew R. ;
Boswell, Rod W. ;
Charles, Christine ;
Dedrick, James P. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2019, 28 (03)
[40]   Technique of integral diagnostics for a radio-frequency inductively coupled plasma discharge unit of an RF ion thruster [J].
Ryabyi V.A. ;
Obukhov V.A. ;
Kirpichnikov A.P. ;
Masherov P.E. ;
Mogulkin A.I. .
Russian Aeronautics, 2015, 58 (04) :448-453