Spatio-temporal modelling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique

被引:13
作者
Colborn, Kathryn L. [1 ]
Giorgi, Emanuele [2 ]
Monaghan, Andrew J. [3 ]
Gudo, Eduardo [4 ]
Candrinho, Baltazar [5 ]
Marrufo, Tatiana J. [4 ]
Colborn, James M. [6 ]
机构
[1] Univ Colorado, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Univ Lancaster, Lancaster Med Sch, Lancaster, England
[3] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[4] Inst Nacl Saude, Maputo, Mozambique
[5] Natl Malaria Control Program, Maputo, Mozambique
[6] Clinton Hlth Access Initiat, Boston, MA USA
基金
比尔及梅琳达.盖茨基金会; 美国国家科学基金会;
关键词
RISK; SURVEILLANCE; ETHIOPIA; AFRICA;
D O I
10.1038/s41598-018-27537-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Malaria is a major cause of morbidity and mortality in Mozambique. We present a malaria early warning system (MEWS) for Mozambique informed by seven years of weekly case reports of malaria in children under 5 years of age from 142 districts. A spatio-temporal model was developed based on explanatory climatic variables to map exceedance probabilities, defined as the predictive probability that the relative risk of malaria incidence in a given district for a particular week will exceed a predefined threshold. Unlike most spatially discrete models, our approach accounts for the geographical extent of each district in the derivation of the spatial covariance structure to allow for changes in administrative boundaries over time. The MEWS can thus be used to predict areas that may experience increases in malaria transmission beyond expected levels, early enough so that prevention and response measures can be implemented prior to the onset of outbreaks. The framework we present is also applicable to other climate-sensitive diseases.
引用
收藏
页数:9
相关论文
共 23 条
[11]  
Mabaso ML., 2006, Int J Health Geogr, V5, P20, DOI [10.1186/1476-072X-5-20, DOI 10.1186/1476-072X-5-20]
[12]   Integrating malaria surveillance with climate data for outbreak detection and forecasting: the EPIDEMIA system [J].
Merkord, Christopher L. ;
Liu, Yi ;
Mihretie, Abere ;
Gebrehiwot, Teklehaymanot ;
Awoke, Worku ;
Bayabil, Estifanos ;
Henebry, Geoffrey M. ;
Kassa, Gebeyaw T. ;
Lake, Mastewal ;
Wimberly, Michael C. .
MALARIA JOURNAL, 2017, 16
[13]   Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia [J].
Midekisa, Alemayehu ;
Beyene, Belay ;
Mihretie, Abere ;
Bayabil, Estifanos ;
Wimberly, Michael C. .
PARASITES & VECTORS, 2015, 8
[14]   Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia [J].
Midekisa, Alemayehu ;
Senay, Gabriel ;
Henebry, Geoffrey M. ;
Semuniguse, Paulos ;
Wimberly, Michael C. .
MALARIA JOURNAL, 2012, 11
[15]   Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya [J].
Sewe, Maquins Odhiambo ;
Tozan, Yesim ;
Ahlm, Clas ;
Rocklov, Joacim .
SCIENTIFIC REPORTS, 2017, 7
[16]   Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I.: Patterns of lagged weather effects reflect biological mechanisms -: art. no. 41 [J].
Teklehaimanot, HD ;
Lipsitch, M ;
Teklehaimanot, A ;
Schwartz, J .
MALARIA JOURNAL, 2004, 3 (1)
[17]   Malaria early warnings based on seasonal climate forecasts from multi-model ensembles [J].
Thomson, MC ;
Doblas-Reyes, FJ ;
Mason, SJ ;
Hagedorn, R ;
Connor, SJ ;
Phindela, T ;
Morse, AP ;
Palmer, TN .
NATURE, 2006, 439 (7076) :576-579
[18]   Mapping malaria risk in Africa: What can satellite data contribute? [J].
Thomson, MC ;
Connor, SJ ;
Milligan, P ;
Flasse, SP .
PARASITOLOGY TODAY, 1997, 13 (08) :313-318
[19]   A close look at the spatial structure implied by the CAR and SAR models [J].
Wall, MM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 121 (02) :311-324
[20]  
WHO, 2001, FRAM FIELD RES AFR C