Multipolar interference effects in nanophotonics

被引:94
作者
Liu, Wei [1 ]
Kivshar, Yuri S. [2 ,3 ]
机构
[1] Natl Univ Def Technol, Coll Optoelect Sci & Engn, Changsha 410073, Hunan, Peoples R China
[2] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 2601, Australia
[3] ITMO Univ, Dept Nanophoton & Metamat, St Petersburg 197101, Russia
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 375卷 / 2090期
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
multipole expansion; Mie resonances; interference; nanostructures; anapole; CORE-SHELL NANOPARTICLES; MAGNETIC FANO RESONANCES; ALL-DIELECTRIC OLIGOMERS; 3RD-HARMONIC GENERATION; UNIDIRECTIONAL SCATTERING; TOROIDAL DIPOLES; SURFACE-PLASMONS; ANAPOLE MODES; METAMATERIALS; NANOANTENNAS;
D O I
10.1098/rsta.2016.0317
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scattering of electromagnetic waves by an arbitrary nanoscale object can be characterized by a multipole decomposition of the electromagnetic field that allows one to describe the scattering intensity and radiation pattern through interferences of dominating multipole modes excited. In modern nanophotonics, both generation and interference of multipole modes start to play an indispensable role, and they enable nanoscale manipulation of light with many related applications. Here, we review the multipolar interference effects in metallic, metal-dielectric and dielectric nanostructures, and suggest a comprehensive view on many phenomena involving the interferences of electric, magnetic and toroidal multipoles, which drive a number of recently discussed effects in nanophotonics such as unidirectional scattering, effective optical antiferromagnetism, generalized Kerker scattering with controlled angular patterns, generalized Brewster angle, and non-radiating optical anapoles. We further discuss other types of possible multipolar interference effects not yet exploited in the literature and envisage the prospect of achieving more flexible and advanced nanoscale control of light relying on the concepts of multipolar interference through full phase and amplitude engineering. This article is part of the themed issue 'ew horizons for nanophotonics'.
引用
收藏
页数:14
相关论文
共 75 条
[1]   Phase-change material-based nanoantennas with tunable radiation patterns [J].
Alaee, R. ;
Albooyeh, M. ;
Tretyakov, S. ;
Rockstuhl, C. .
OPTICS LETTERS, 2016, 41 (17) :4099-4102
[2]   A generalized Kerker condition for highly directive nanoantennas [J].
Alaee, R. ;
Filter, R. ;
Lehr, D. ;
Lederer, F. ;
Rockstuhl, C. .
OPTICS LETTERS, 2015, 40 (11) :2645-2648
[3]  
[Anonymous], 1989, GEOMETRIC PHASES PHY
[4]  
[Anonymous], 1998, ABSORPTION SCATTERIN
[5]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[6]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[7]   Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings [J].
Bomzon, Z ;
Kleiner, V ;
Hasman, E .
OPTICS LETTERS, 2001, 26 (18) :1424-1426
[8]   Ultracompact and unidirectional metallic antennas [J].
Bonod, Nicolas ;
Devilez, Alexis ;
Rolly, Brice ;
Bidault, Sebastien ;
Stout, Brian .
PHYSICAL REVIEW B, 2010, 82 (11)
[9]   Shaping the Radiation Pattern of Second-Harmonic Generation from AlGaAs Dielectric Nanoantennas [J].
Carletti, Luca ;
Locatelli, Andrea ;
Neshev, Dragomir ;
De Angelis, Costantino .
ACS PHOTONICS, 2016, 3 (08) :1500-1507
[10]   A review of metasurfaces: physics and applications [J].
Chen, Hou-Tong ;
Taylor, Antoinette J. ;
Yu, Nanfang .
REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (07)