Ambiguous loci of mutually nearest and mutually furthest points in Banach spaces

被引:3
作者
Li, C
Xu, HK
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
minimization problem; maximization problem; well-posed; ambiguous loci;
D O I
10.1016/j.na.2004.04.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a real separable strictly convex Banach space and G a nonempty closed subset of X. Let K(X) (resp. K-b(X)) denote the family of all nonempty boundedly compact (resp. compact) convex subsets of X endowed with the H-p-topology (resp. the Hausdorff distance), H-G(X) (resp. K-G(b)(X)) the closure of the set {A is an element of K(X) : A boolean AND G = 0} (resp. {A is an element of K-b(X) : A boolean AND G = 0}), and V(G) (resp. V-b(G)) the family of A is an element of K-G(X) (resp. A is an element of K-G(b)(X)) such that the minimization problem min(A, G) fails to be well-posed. It is proved that for most (in the sense of the Baire category) closed subsets (resp. bounded closed subsets) G of X, V(G) (resp. V-b(G)) is everywhere uncountable in K-G(X) (resp. K-G(b)(X)). A similar result for the mutually furthest point problem is also given. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:367 / 377
页数:11
相关论文
共 16 条
[1]   CONVEX-OPTIMIZATION AND THE EPI-DISTANCE TOPOLOGY [J].
BEER, G ;
LUCCHETTI, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 327 (02) :795-813
[2]   EXISTENCE OF NEAREST POINTS IN BANACH-SPACES [J].
BORWEIN, JM ;
FITZPATRICK, S .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1989, 41 (04) :702-720
[3]   On a generalized best approximation problem [J].
De Blasi, FS ;
Myjak, J .
JOURNAL OF APPROXIMATION THEORY, 1998, 94 (01) :54-72
[4]  
DEBLASI FS, 1992, NATO ADV SCI I C-MAT, V356, P341
[5]   STAR-SHAPED SETS AND BEST APPROXIMATION [J].
DEBLASI, FS ;
MYJAK, J ;
PAPINI, PL .
ARCHIV DER MATHEMATIK, 1991, 56 (01) :41-48
[6]   ON MUTUALLY NEAREST AND MUTUALLY FURTHEST POINTS OF SETS IN BANACH-SPACES [J].
DEBLASI, FS ;
MYJAK, J ;
PAPINI, PL .
JOURNAL OF APPROXIMATION THEORY, 1992, 70 (02) :142-155
[7]   AMBIGUOUS LOCI OF THE NEAREST POINT MAPPING IN BANACH-SPACES [J].
DEBLASI, FS ;
MYJAK, J .
ARCHIV DER MATHEMATIK, 1993, 61 (04) :377-384
[8]   AMBIGUOUS LOCI OF THE METRIC PROJECTION ONTO COMPACT STAR-SHAPED SETS IN A BANACH-SPACE [J].
DEBLASI, FS ;
KENDEROV, PS ;
MYJAK, J .
MONATSHEFTE FUR MATHEMATIK, 1995, 119 (1-2) :23-36
[9]  
Dontchev AL, 1993, Lecture Notes in Mathematics, V1543