Tuning phase stability and short-range order through Al doping in (CoCrFeMn)100-xAlx high-entropy alloys

被引:31
作者
Singh, Prashant [1 ]
Marshal, Amalraj [2 ]
Smirnov, A., V [1 ]
Sharma, Aayush [1 ]
Balasubramanian, Ganesh [3 ]
Pradeep, K. G. [2 ,4 ]
Johnson, Duane D. [1 ,5 ]
机构
[1] US DOE, Ames Lab, Ames, IA 50011 USA
[2] Rhein Westfal TH Aachen, Mat Chem, D-52074 Aachen, Germany
[3] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
[4] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, Tamil Nadu, India
[5] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
关键词
1ST-PRINCIPLES THEORY; ELECTRONIC-STRUCTURE; METALLIC ALLOYS; SINGLE-PHASE; MICROSTRUCTURE;
D O I
10.1103/PhysRevMaterials.3.075002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For (CoCrFeMn)(100-x)Al-x high-entropy alloys, we investigate the phase evolution with increasing Al content (0 <= x <= 20 at.%). From first-principles theory, aluminum doping drives the alloy structurally from fcc to bcc separated by a narrow two-phase region (fcc+bcc), which is well supported by our experiments. Using KKR-CPA electronic-structure calculations, we highlight the effect of Al doping on the formation enthalpy (alloy stability) and electronic dispersion of (CoCrFeMn)(100-x)Al-x alloys. As chemical short-range order indicates the nascent local order, and entropy changes, as well as expected low-temperature ordering behavior, we use KKR-CPA-based thermodynamic linear response to predict the chemical ordering behavior of arbitrary complex solid-solution alloys-an ideal approach for predictive design of high-entropy alloys. The predictions agree with our present experimental findings and other reported ones.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Chemically Mediated Quantum Criticality in NbFe2 [J].
Alam, Aftab ;
Johnson, D. D. .
PHYSICAL REVIEW LETTERS, 2011, 107 (20)
[2]   Structural, magnetic, and defect properties of Co-Pt-type magnetic-storage alloys: Density-functional theory study of thermal processing effects [J].
Alam, Aftab ;
Kraczek, Brent ;
Johnson, D. D. .
PHYSICAL REVIEW B, 2010, 82 (02)
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤2) high-entropy alloys [J].
Chou, Hsuan-Ping ;
Chang, Yee-Shyi ;
Chen, Swe-Kai ;
Yeh, Jien-Wei .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 163 (03) :184-189
[5]   Single-crystal growth of a FeCoCrMnAl high-entropy alloy [J].
Feuerbacher, M. ;
Wuertz, E. ;
Kovacs, A. ;
Thomas, C. .
MATERIALS RESEARCH LETTERS, 2017, 5 (02) :128-134
[6]   Hexagonal High-entropy Alloys [J].
Feuerbacher, Michael ;
Heidelmann, Markus ;
Thomas, Carsten .
MATERIALS RESEARCH LETTERS, 2015, 3 (01) :1-6
[7]  
Gao M.C., 2016, High -Entropy Alloys Fundamentals and Applications, DOI [10.1007/978-3-319-27013-5, DOI 10.1007/978-3-319-27013-5]
[8]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[9]   Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys [J].
Granberg, F. ;
Nordlund, K. ;
Ullah, Mohammad W. ;
Jin, K. ;
Lu, C. ;
Bei, H. ;
Wang, L. M. ;
Djurabekova, F. ;
Weber, W. J. ;
Zhang, Y. .
PHYSICAL REVIEW LETTERS, 2016, 116 (13)
[10]   A 1ST-PRINCIPLES THEORY OF FERROMAGNETIC PHASE-TRANSITIONS IN METALS [J].
GYORFFY, BL ;
PINDOR, AJ ;
STAUNTON, J ;
STOCKS, GM ;
WINTER, H .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1985, 15 (06) :1337-1386