Cycles and paths in graphs with large minimal degree

被引:5
作者
Nikiforov, V [1 ]
Schelp, RH [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
weakly pencyclic; minimal degree; consecutive cycle lengths;
D O I
10.1002/jgt.20015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph of order n and minimal degree > cn (0 < c < 1/2). We prove that (1) There exist n(0) = n(0)(c) and k = k(c) such that if n > n(0) and G contains a cycle C-t for some t > 2k, then G contains a cycle Ct-2s for some positive s < k; (2) Let G be 2-connected and non-bipartite. For each E (0 < E < 1), there exists no = no(C, E) such that if n > no then G contains a cycle C-t for all t with [(2)/(c)] - 2 less than or equal to t less than or equal to 2(1 - epsilon)cn. This answers positively a question of Erdos, Faudree, Gyarfas and Schelp. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 14 条
[1]  
Andrasfai B., 1974, Discrete Mathematics, V8, P205, DOI 10.1016/0012-365X(74)90133-2
[2]  
[Anonymous], 1998, GRADUATE TEXTS MATH
[3]   Weakly pancyclic graphs [J].
Bollobás, B ;
Thomason, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 77 (01) :121-137
[4]  
Bollobas B, 1997, J GRAPH THEOR, V26, P165, DOI 10.1002/(SICI)1097-0118(199711)26:3<165::AID-JGT7>3.3.CO
[5]  
2-R
[6]  
Bondy J.A., 1971, J COMBINATORIAL THEO, V11, P80
[7]   A sufficient condition for all short cycles [J].
Brandt, S .
DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) :63-66
[8]  
Brandt S, 1998, J GRAPH THEOR, V27, P141, DOI 10.1002/(SICI)1097-0118(199803)27:3<141::AID-JGT3>3.0.CO
[9]  
2-O
[10]  
ERDOS P, 1988, ODD CYCLES GRAPHS GI, V1, P407