SOME INEQUALITIES FOR WEIGHTED AND INTEGRAL MEANS OF CONVEX FUNCTIONS ON LINEAR SPACES

被引:0
作者
Dragomir, Silvestru Sever [1 ,2 ]
机构
[1] Victoria Univ, Coll Engn & Sci, Math, POB 14428, Melbourne, Vic 8001, Australia
[2] Univ Witwatersrand, DST NRF Ctr Excellence Math & Stat Sci, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
来源
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS | 2020年 / 46卷 / 02期
关键词
Convex functions; Linear spaces; Integral inequalities; Hermite-Hadamard inequality; Fejer's inequalities; Norms and semi-inner products; OSTROWSKI TYPE;
D O I
10.29228/proc.29
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a convex function on a convex subset C of a linear space and x, y is an element of C, with x not equal y. If p : [0, 1] -> R is a Lebesgue integrable and symmetric function, namely p (1 - t) = p (t) for all t is an element of [0, 1] and such that the condition 0 <= integral(tau)(0) p(s) ds <= integral(1)(0) p(s) ds for all tau is an element of [0, 1] holds, the we have vertical bar 1/integral(1)(0) p(tau)d tau integral(1)(0) p(tau) f ((1 - tau)x + tau y)d tau - integral(1)(0)f((1 - tau)x + tau y)d tau vertical bar <= 1/integral(1)(0)p(tau) d tau integral(1)(0)(integral(tau)(0)p(s) ds) (1- tau)d tau [del( -) f(y) (y - x) -del (+) f(x) (y - x)] <= 1/2 [del (-)f(y) (y - x) - del(+) f(x) (y - x)]. Some applications for norms and semi-inner products are also provided.
引用
收藏
页码:197 / 209
页数:13
相关论文
共 11 条
[1]  
Alomari M., 2008, INT J CONT MATH SCI, V3, P1569
[2]   New convex functions in linear spaces and Jensen's discrete inequality [J].
Chen, Xiusu .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[3]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC
[4]  
Dragomir S.S., 2000, Selected Topics on Hermite-Hadamard Inequalities and Applications
[5]  
Dragomir S. S., 2004, SEMI INNER PRODUCTS
[6]  
DRAGOMIR S. S., 2002, J. Inequal. Pure Appl. Math., V3
[7]  
Dragomir SS., 2019, RGMIA RES REP COLL, V22
[8]   Improvement of Jensen's Inequality in terms of Gateaux Derivatives for Convex Functions in Linear Spaces with Applications [J].
Khan, Muhammad Adil ;
Khalid, Sadia ;
Pecaric, Josip .
KYUNGPOOK MATHEMATICAL JOURNAL, 2012, 52 (04) :495-511
[9]   Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application [J].
Kikianty, Eder ;
Dragomir, S. S. ;
Cerone, P. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) :2235-2246
[10]  
Kikianty E, 2010, MATH INEQUAL APPL, V13, P1