Research on Improved Weighted Fuzzy Clustering Algorithm Based on Rough Set

被引:3
作者
Li Jian-guo [1 ]
Gao Jing-wei [2 ]
机构
[1] Hebei Normal Univ Sci & Technol, Dept Comp Sci, Qin Huangdao, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Coll Math & Informat Sci, Qin Huangdao, Peoples R China
来源
2009 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND TECHNOLOGY, VOL II, PROCEEDINGS | 2009年
关键词
clustering; rough set; weighted fuzzy algorithm; C-MEANS; CONVERGENCE;
D O I
10.1109/ICCET.2009.236
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Clustering is used to find out the objects that resemble each other and compose different groups, cluster analysis is an important job in data mining. This article brings the rough set into fuzzy cluster, by using the methods of attributes contracted in the rough set theory to improve the FCM algorithm; the improved algorithm had been proved a high precise ratio.
引用
收藏
页码:98 / +
页数:2
相关论文
共 6 条
[1]   CONVERGENCE THEORY FOR FUZZY C-MEANS - COUNTEREXAMPLES AND REPAIRS [J].
BEZDEK, JC ;
HATHAWAY, RJ ;
SABIN, MJ ;
TUCKER, WT .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1987, 17 (05) :873-877
[2]   CONVERGENCE AND CONSISTENCY OF FUZZY C-MEANS ISODATA ALGORITHMS [J].
SABIN, MJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) :661-668
[3]  
SELIM SA, 1986, IEEE T PAMI, V8, P184
[4]  
TUCKER WT, 1987, COUNTER EXAMPLES CON, pCH7
[5]  
WIDHAM MP, 1983, GEOMETRICAL FUZZY CL, V10, P271
[6]   CONVERGENCE PROPERTIES OF THE GENERALIZED FUZZY C-MEANS CLUSTERING ALGORITHMS [J].
YANG, MS .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (12) :3-11