Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power

被引:69
作者
Feng, Chunhua [1 ]
Lv, Zhisheng [1 ]
Yang, Xiaoshuang [1 ]
Wei, Chaohai [1 ]
机构
[1] S China Univ Technol, Coll Environm & Energy, Key Lab Pollut Control & Ecosyst Restorat Ind Clu, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
COATED CARBON PAPER; ELECTROCHEMICAL PROPERTIES; ACTIVATED CARBON; PERFORMANCE; COMPOSITE; GRAPHENE; SUPERCAPACITORS; ENERGY; GENERATION; NANOTUBES;
D O I
10.1039/c4cp00923a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Extensive efforts have been devoted to improve the anode performance of a microbial fuel cell (MFC) by using modified carbon-based anode materials, but most of them did not recognize that the power performance measured by the commonly-used varying circuit resistance (VCR) or linear sweep voltammetry (LSV) method was overestimated due to the effect of anode capacitance. Here, we examined and compared the transient power and the stationary power of a series of MFCs equipped with the polypyrrole-graphene oxide (PPy-GO)-modified graphite felt anodes. It was found that noticeable transient power was recorded when the VCR or LSV method was chosen for power measurements. Calculations on the contribution of different sources to the measured maximum power density showed that the discharge of bio-electrons stored in the high-capacitance anode was a dominant contributor, especially when the time duration (for the VCR method) was not sufficiently long or the scan rate (for the LSV method) was not sufficiently low. Although anode modification with capacitive materials can result in the increased stationary power obtained from the fed-batch cycle test, owing to the increases in the anode surface area and the number of bacteria attached to anode, the increase in the transient power was more remarkable.
引用
收藏
页码:10464 / 10472
页数:9
相关论文
共 82 条
[1]   High energy density supercapacitors using macroporous kitchen sponges [J].
Chen, Wei ;
Rakhi, R. B. ;
Alshareef, H. N. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (29) :14394-14402
[2]   A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries [J].
Chen, Xiao-Ting ;
Wang, Kai-Xue ;
Zhai, Yu-Bo ;
Zhang, Hao-Jie ;
Wu, Xue-Yan ;
Wei, Xiao ;
Chen, Jie-Sheng .
DALTON TRANSACTIONS, 2014, 43 (08) :3137-3143
[3]   High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes [J].
Chen, Yao ;
Zhang, Xiong ;
Zhang, Dacheng ;
Yu, Peng ;
Ma, Yanwei .
CARBON, 2011, 49 (02) :573-580
[4]   High-Performance Supercapacitors Based on Hierarchically Porous Graphite Particles [J].
Chen, Zheng ;
Wen, Jing ;
Yan, Chunzhu ;
Rice, Lynn ;
Sohn, Hiesang ;
Shen, Meiqing ;
Cai, Mei ;
Dunn, Bruce ;
Lu, Yunfeng .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :551-556
[5]   Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells [J].
Cheng, Shaoan ;
Logan, Bruce E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (03) :492-496
[6]   Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells [J].
Ci, Suqin ;
Wen, Zhenhai ;
Chen, Junhong ;
He, Zhen .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 14 (01) :71-74
[7]   High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition [J].
Du, Chunsheng ;
Pan, Ning .
NANOTECHNOLOGY, 2006, 17 (21) :5314-5318
[8]   Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells [J].
Fan, Yanzhen ;
Xu, Shoutao ;
Schaller, Rebecca ;
Jiao, Jun ;
Chaplen, Frank ;
Liu, Hong .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (05) :1908-1912
[9]   A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells [J].
Feng, Chunhua ;
Ma, Le ;
Li, Fangbai ;
Mai, Hongjian ;
Lang, Xuemei ;
Fan, Shuanshi .
BIOSENSORS & BIOELECTRONICS, 2010, 25 (06) :1516-1520
[10]   Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells [J].
Feng, Yujie ;
Yang, Qiao ;
Wang, Xin ;
Logan, Bruce E. .
JOURNAL OF POWER SOURCES, 2010, 195 (07) :1841-1844