Local asymptotic normality for Student-Levy processes under high-frequency sampling

被引:2
作者
Massing, Till [1 ]
机构
[1] Univ Duisburg Essen, Fac Econ, Univ Str 12, D-45117 Essen, Germany
关键词
Levy process; Student t distribution; high-frequency sampling; local asymptotic normality; Monte Carlo expectation-maximization; EM; LIKELIHOOD;
D O I
10.1080/02331888.2019.1618856
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There is considerable interest in parameter estimation in Levy models. The maximum likelihood estimator is widely used because under certain conditions it enjoys asymptotic efficiency properties. The toolkit for Levy processes is the local asymptotic normality which guarantees these conditions. Although the likelihood function is not known explicitly, we prove local asymptotic normality for the location and scale parameters of the Student-Levy process assuming high-frequency data. In addition, we propose a numerical method to make maximum likelihood estimates feasible based on the Monte Carlo expectation-maximization algorithm. A simulation study verifies the theoretical results.
引用
收藏
页码:721 / 752
页数:32
相关论文
共 34 条
[11]   On the likelihood function of small time variance Gamma Levy processes [J].
Kawai, Reiichiro .
STATISTICS, 2015, 49 (01) :63-83
[12]   LOCAL ASYMPTOTIC NORMALITY FOR NORMAL INVERSE GAUSSIAN LEVY PROCESSES WITH HIGH-FREQUENCY SAMPLING [J].
Kawai, Reiichiro ;
Masuda, Hiroki .
ESAIM-PROBABILITY AND STATISTICS, 2013, 17 :13-32
[13]   On the local asymptotic behavior of the likelihood function for Meixner Levy processes under high-frequency sampling [J].
Kawai, Reiichiro ;
Masuda, Hiroki .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (04) :460-469
[14]   ROBUST STATISTICAL MODELING USING THE T-DISTRIBUTION [J].
LANGE, KL ;
LITTLE, RJA ;
TAYLOR, JMG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :881-896
[15]  
LE CAM L., 1960, University of California Publications in Statistics, V3, P37
[16]  
Le Cam Lucien., 1990, Asymptotics in Statistics: Some Basic Concepts, V1st, DOI [DOI 10.1007/978-1-4684-0377-0, 10.1007/978-1-4684-0377-05, DOI 10.1007/978-1-4684-0377-05]
[17]   Implementations of the Monte Carlo EM algorithm [J].
Levine, RA ;
Casella, G .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (03) :422-439
[18]  
Little R. J., 2019, STAT ANAL MISSING DA, V793
[19]  
LIU C, 2004, BIOMETRIKA, V81, P633
[20]  
LIU CH, 1995, STAT SINICA, V5, P19