Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses

被引:103
作者
Qiao, Weihua [1 ]
Li, Chaonan [2 ]
Fan, Liu-Min [2 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
[2] Peking Univ, Sch Life Sci, State Key Lab Prot & Plant Gene Res, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitric oxide; Hydrogen peroxide; Stress response; Cross-talk; INDUCED STOMATAL CLOSURE; STIMULATES SEED-GERMINATION; PROTEIN-KINASE CASCADE; LEAF CELL-DEATH; ABSCISIC-ACID; OXIDATIVE STRESS; HEAT-STRESS; SALT TOLERANCE; ARABIDOPSIS-THALIANA; PROTEOMIC IDENTIFICATION;
D O I
10.1016/j.envexpbot.2013.12.014
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nitric oxide (NO) and hydrogen peroxide (H2O2) are two signaling molecules, which play roles in diverse organisms. In the past two decades, evidence has been accumulating to address their involvements in stress responses in plants, but how these two molecules interact with each other and how the signals are integrated in biological processes remain fragmentary and far from clear in the literature. This review brings together the knowledge obtained so far on these two molecules and their cross-talk in plant stress responses, particularly abiotic stresses including drought, salinity, extreme temperatures, UV light, and heavy metals. We tentatively discuss, in the context of abiotic stresses, how NO and H2O2 interact with each other at two levels, biosynthesis, and regulation of gene expression or protein activities. The crosstalk between NO and H2O2 with other signaling pathways in the regulation of abiotic stress responses in plants is also discussed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 93
页数:10
相关论文
共 155 条
[1]   Antioxidative defense under salt stress [J].
Abogadallah, Gaber M. .
PLANT SIGNALING & BEHAVIOR, 2010, 5 (04) :369-374
[2]   The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2 [J].
Avsian-Kretchmer, O ;
Gueta-Dahan, Y ;
Lev-Yadun, S ;
Gollop, R ;
Ben-Hayyim, G .
PLANT PHYSIOLOGY, 2004, 135 (03) :1685-1696
[3]   Effects of brassinosteroids on the plant responses to environmental stresses [J].
Bajguz, Andrzej ;
Hayat, Shamsul .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2009, 47 (01) :1-8
[4]   The Heat-Inducible Transcription Factor HsfA2 Enhances Anoxia Tolerance in Arabidopsis [J].
Banti, Valeria ;
Mafessoni, Fabrizio ;
Loreti, Elena ;
Alpi, Amedeo ;
Perata, Pierdomenico .
PLANT PHYSIOLOGY, 2010, 152 (03) :1471-1483
[5]   Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants [J].
Beligni, MV ;
Lamattina, L .
PLANTA, 2000, 210 (02) :215-221
[6]   Nitric oxide in plants: the history is just beginning [J].
Beligni, MV ;
Lamattina, L .
PLANT CELL AND ENVIRONMENT, 2001, 24 (03) :267-278
[7]   The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy [J].
Bethke, Paul C. ;
Libourel, Igor G. L. ;
Aoyama, Natsuyo ;
Chung, Yong-Yoon ;
Still, David W. ;
Jones, Russell L. .
PLANT PHYSIOLOGY, 2007, 143 (03) :1173-1188
[8]   Nitric oxide reduces seed dormancy in Arabidopsis [J].
Bethke, PC ;
Libourel, IGL ;
Jones, RL .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (03) :517-526
[9]   Role of active oxygen species and NO in plant defence responses [J].
Bolwell, GP .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (04) :287-294
[10]   The apoplastic oxidative burst in response to biotic stress in plants: a three-component system [J].
Bolwell, GP ;
Bindschedler, LV ;
Blee, KA ;
Butt, VS ;
Davies, DR ;
Gardner, SL ;
Gerrish, C ;
Minibayeva, F .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1367-1376