SPECTRAL PROPERTIES OF FIRST-ORDER DIFFERENTIAL OPERATORS WITH AN INVOLUTION AND GROUPS OF OPERATORS

被引:1
作者
Krishtal, I. A. [1 ]
Uskova, N. B. [2 ]
机构
[1] Northern Illinois Univ, De Kalb, IL 60115 USA
[2] Voronezh State Tech Univ, 14 Moskovsky Ave, Voronezh 394026, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2019年 / 16卷
关键词
method of similar operators; differential operator with an involution; spectrum; group of operators; BOUNDARY-VALUE-PROBLEMS; FOURIER METHOD; MIXED PROBLEM; PERTURBATION-THEORY; DIRAC OPERATORS; EQUATIONS; THEOREM; SYSTEM; EQUICONVERGENCE; REFLECTION;
D O I
10.33048/semi.2019.16.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several mixed problems for the differential equations with an involution are considered in this work. The spectral properties of the corresponding differential operators are studied. The operator groups generated by the differential operators with an involution are constructed.
引用
收藏
页码:1091 / 1132
页数:42
相关论文
共 85 条
[41]   Substantiation of Fourier Method in Mixed Problem with Involution [J].
Burlutskaya, M. Sh ;
Khromov, A. P. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2011, 11 (04) :3-12
[42]   Initial-boundary value problems for first-order hyperbolic equations with involution [J].
Burlutskaya, M. Sh ;
Khromov, A. P. .
DOKLADY MATHEMATICS, 2011, 84 (03) :783-786
[43]   Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution [J].
Burlutskaya, M. Sh ;
Khromov, A. P. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (12) :2102-2114
[44]   The Steinhaus theorem on equiconvergence for functional-differential operators [J].
Burlutskaya, M. Sh. ;
Khromov, A. P. .
MATHEMATICAL NOTES, 2011, 90 (1-2) :20-31
[45]   Classical Solution of a Mixed Problem with Involution [J].
Burlutskaya, M. Sh ;
Khromov, A. P. .
DOKLADY MATHEMATICS, 2010, 82 (03) :865-868
[46]  
Burlutskaya M. Sh., 2011, VESTNIK VORONEZH GOS, V2, P64
[47]  
Cabada A., 2014, BOUND VALUE PROBL, V99, P1
[48]   Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions [J].
Cabada, Alberto ;
Tojo, F. Adrian F. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :529-546
[49]  
Cherednikova S. A., 2016, VESTNIK VORONEZH GOS, V3, P71
[50]  
Dunford N., 1971, PURE APPL MATH, VVII