Image Set Representation with L1-Norm Optimal Mean Robust Principal Component Analysis

被引:0
作者
Cao, Youxia [1 ]
Jiang, Bo [1 ]
Tang, Jin [1 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, 111 Jiulong Rd, Hefei, Peoples R China
来源
IMAGE AND GRAPHICS (ICIG 2017), PT II | 2017年 / 10667卷
基金
中国国家自然科学基金;
关键词
FACE RECOGNITION; CLASSIFICATION;
D O I
10.1007/978-3-319-71589-6_11
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Many problems in computer vision area can be formulated as image set representation and classification. One main challenge is that image set data usually contains various kinds of noises and outliers which usually make the recognition/learning tasks of image set more challengeable. In this paper, we propose a new L-1 norm optimal Mean Principal Component Analysis (L1-MPCA) to learn an optimal low-rank representation for image set. Comparing with original observed image set, L1-MPCA based low-rank representation is generally noiseless and thus can encourage more robust learning process. An effective update algorithm has been proposed to solve the proposed L1-MPCA model. Experimental results on several datasets demonstrate the effectiveness and robustness of the proposed L1-MPCA method.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 27 条
[1]  
[Anonymous], 2010, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2010.5539965
[2]  
Arandjelovic O, 2005, PROC CVPR IEEE, P581
[3]  
Chen SK, 2014, IEEE WINT CONF APPL, P1074, DOI 10.1109/WACV.2014.6835985
[4]   Improved Image Set Classification via Joint Sparse Approximated Nearest Subspaces [J].
Chen, Shaokang ;
Sanderson, Conrad ;
Harandi, Mehrtash T. ;
Lovell, Brian C. .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :452-459
[5]  
Chen ZQ, 2015, PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, P750, DOI 10.1109/ACPR.2015.7486603
[6]  
Cui Z, 2012, PROC CVPR IEEE, P2626, DOI 10.1109/CVPR.2012.6247982
[7]  
Gross N, 2001, BUS WEEK, P18
[8]  
Hamm J., 2008, P 25 INT C MACH LEAR, P376, DOI [10.1145/1390156.1390204, DOI 10.1145/1390156.1390204]
[9]  
Harandi M. T., 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P2705, DOI 10.1109/CVPR.2011.5995564
[10]  
Hu Y, 2011, PROC CVPR IEEE, P121, DOI 10.1109/CVPR.2011.5995500